欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (2): 82-85.doi: 10.13385/j.cnki.vacuum.2021.02.16

• 3D Printing Technology • Previous Articles     Next Articles

Stability Analysis of Linear Friction Welding Friction Vibration Servo System

LIU Lei1,2   

  1. 1. Shenyang Institute of Automation,Chinese Academy of Sciences, Shenyang 110016, China;
    2. Institute of Robotic and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
  • Received:2021-01-13 Online:2021-03-25 Published:2021-04-09

Abstract: In recent years, linear friction welding technology has attracted much attention due to its high efficiency and high quality. This paper briefly introduces the working principle and system composition of linear friction welding,and designs a set of hydraulic vibration servo system according to the practical requirements of welding machine. Firstly, according to the technical parameters of the vibration servo system, the required oil source flow, maximum acceleration, speed and other parameters are calculated. According to the calculation results, the key power components and vibration servo valve in the hydraulic system are then designed and selected. The mathematical model of the friction vibration system is established, and the main parameters are calculated. The mathematical model is simulated, and Bode diagram of the system are drawn. Combined with the simulation results and Bode diagram, the scheme is feasible and can be applied, which provides a reference for future equipment development.

Key words: linear friction welding, friction vibration, hydraulic servo, stability

CLC Number: 

  • TP273
[1] 周军, 梁武, 张春波, 等. TC17钛合金线性摩擦焊接头组织及力学性能分析[J]. 焊接学报, 2020, 41(5): 36-41.
[2] 王颖, 金辉, 孙梅. 线性摩擦焊设备液压伺服系统的设计[J]. 机床与液压, 2012, 40(15): 97-101.
[3] 叶泽峰, 马铁军, 李文亚, 等. TA19钛合金线性摩擦焊接试验研究[J]. 焊管, 2019, 42(12): 13-17.
[4] 姜梦. 低真空激光焊接特性及热物理过程的试验研究与数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[5] 李丹. 加强焊接技术创新研究, 促进基础研究与工程化应用的融合——走进陕西省摩擦焊接工程技术重点实验室[J]. 航空制造技术, 2019, 62(19): 76-77.
[6] 孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019, 62(18): 63-72.
[7] 万志康, 凌昆, 陈长崎, 等. CFETR真空室焊接接头力学性能分析[J]. 真空科学与技术学报, 2019, 39(6): 529-535.
[8] 修磊. 大型复杂轮廓真空室焊接模拟及残余应力消除方法研究[D]. 合肥: 中国科学技术大学, 2017.
[9] 孙安荣, 孙永辉. 10Ni5CrMoV钢真空激光焊接焊缝成形尺寸测量及等离子体特征[J]. 中国激光, 2020, 40(5): 841-846.
[10] 王继明, 李俐群, 彭根琛, 等. 10Ni5CrMoV钢真空激光焊接焊缝的组织与性能[J]. 中国激光, 2019, 46(4): 66-74.
[11] 张诗晴, 方泓树. 线性摩擦焊设备顶锻控制系统基于AMESim的仿真研究[J]. 制造业自动化, 2018, 40(10): 82-84.
[12] 栾海英, 陈贞发. 线性摩擦焊电液伺服系统的研制[J]. 液压与气动, 2007(5): 48-49.
[13] 李晓红, 张彦华, 李赞, 等. 热处理温度对TC17(α+β)/ TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[14] 宋志安. 基于MATLAB的液压伺服控制系统分析与设计[M]. 北京: 国防工业出版社, 2008: 125-150.
[15] 刘增光, 岳大灵, 安林超, 等. 基于MATLAB的力反馈两级电液伺服阀建模与仿真[J]. 液压与气动, 2015(5): 84-85.
[16] 李建英, 董法堂, 李士铭, 等. 多柔度电液位置伺服系统建模与稳定性分析[J]. 哈尔滨理工大学学报, 2020, 25(2): 57-63.
[1] CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source [J]. VACUUM, 2021, 58(1): 6-9.
[2] XIA Zhu-jie, ZHANG Zhi-guo, WANG Hong-li, SU Yi-fan, TANG Peng, LIN Song-sheng, DAI Jiang-ming, SHI Qianb. Preparation and Electrochromic Properties of WO3 Thin Films [J]. VACUUM, 2020, 57(2): 47-52.
[3] WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35.
[4] SUN Zhi-ming, HE Chao, ZHANG Ying-li, ZHU Zhi-peng, YUE Xiang-ji, ZHANG Bin, BA De-chun. Design and finite element analysis of large-scale horizontal vacuum container [J]. VACUUM, 2019, 56(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!