欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (1): 6-9.doi: 10.13385/j.cnki.vacuum.2021.01.02

• Measurement and Control • Previous Articles     Next Articles

Design and Characteristic Study on Compact Microwave ECR Plasma Source

CHAI Hao1, JIA Jun-wei1, WANG Bin2, LI Peng2, CUI Shuang2, FENG Xu3, LI Wei1, LIU Zhan1, LI Shao-fei1, CHEN Quan1   

  1. 1. Beijing Orient Institute of Measurement and Test,Beijing 100094,China;
    2. Beijing Institute of Space Mechanical and Electricity,Beijing 100076,China;
    3. Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
  • Received:2020-02-20 Online:2021-01-25 Published:2021-01-26

Abstract: Space missions such as electrical propulsion experiment and Langmuir probe payload calibration demand the plasma parameter calibration in order to ensure the accuracy of the measurement results. At present,the calibration of plasma parameters is mainly achieved in a stable plasma environment through comparison of the instrument and the standard. Therefore, obtaining a stable plasma environment is a fundamental requirement for the study of plasma calibration. The microwave ECR source has the characteristics of uniformity, stability and wide adjustable range, which is quite suitable to apply in the plasma calibration. In this paper, a compact permanent magnetic microwave ECR plasma source was designed and studied, and its spatial distribution and stability were obtained. The experimental results show that the stability and repeatability of the microwave ECR source used in this experiment could achieve less than 10%, which has potential to be applied as the standard plasma source for the plasma parameter calibration.

Key words: ECR source, plasma calibration, spatial distribution, stability

CLC Number: 

  • TB79
[1] Tong J, Sun L, Jia R, et al.Experimental Techniques in Simulated Space Plasma Environment on Ground[J]. Chinese Journal of Vacuum Science & Technology, 2008, 28(3): 203-207.
[2] Wolfgang, Baumjohann.Basic space plasma physics[M].London: Imperical College Press, 1996: 20-33.
[3] Chen F F, Chang J P.Lecture Notes on Principles of Plasma Processing[M]. Los Angeles: Springer US, 2003:3-20.
[4] Hebner G A, Miller P A, Woodworth J R.Handbook of Advanced Plasma Processing Techniques[M]. Berlin: Springer, 2000: 145-155.
[5] Kempkens H, Uhlenbusch J.Scattering diagnostics of low-temperature plasmas(Rayleigh scattering, thomson scattering, CARS)[J]. Plasma Sources Science & technology, 2000, 9(4):492.
[6] 郑灵, 赵青, 罗先刚, 等. 等离子体中电磁波传输特性理论与实验研究[J]. 物理学报, 2012, 61(15): 000343-349.
[7] Laframboise J G.Theory of spherical and cylindrical langmuir probes in a collisionless, maxwellian plasma at rest[J]. University of Toronto, 1966, 100(5): 15-38.
[8] Gambino N, Brandst tter M, Rollinger B, et al. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas[J]. Review of Scientific Instruments, 2014, 85(9): 093302.
[9] Baqueroruiz M, Avino F, Chellai O, et al.Dual Langmuir-probe array for 3D plasma studies in TORPEX[J]. Review of Scientific Instruments, 2016, 87(11): 113504.
[10] Gudmundsson J t, Alami J, Helmersson U. Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge[J]. Surface & Coatings technology, 2002, 161(2): 249-256.
[11] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究[J]. 物理学报, 2011, 60(4): 359-364.
[12] Fox-Lyon N, Oehrlein G S, Godyak V.Effect of surface derived hydrocarbon impurities on Ar plasma properties[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2014, 32(3): 030601.
[13] 唐亮. 基于LabVIEW的朗谬探针诊断系统的研制及应用[D]. 武汉: 华中科技大学, 2011.
[14] 吴金生. 基于LabVIEW的Langmuir探针等离子体诊断系统研究[D]. 上海: 上海交通大学, 2012.
[15] 李唤. 微波等离子体及其功能薄膜沉积[D]. 合肥: 中国科学技术大学, 2017.
[1] XIA Zhu-jie, ZHANG Zhi-guo, WANG Hong-li, SU Yi-fan, TANG Peng, LIN Song-sheng, DAI Jiang-ming, SHI Qianb. Preparation and Electrochromic Properties of WO3 Thin Films [J]. VACUUM, 2020, 57(2): 47-52.
[2] WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35.
[3] SUN Zhi-ming, HE Chao, ZHANG Ying-li, ZHU Zhi-peng, YUE Xiang-ji, ZHANG Bin, BA De-chun. Design and finite element analysis of large-scale horizontal vacuum container [J]. VACUUM, 2019, 56(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jie, KANG Song, DONG Chang-kun. Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor[J]. VACUUM, 2021, 58(1): 1 -5 .
[2] LI Fu-song, WANG Wen-jun, LIN Wei-jian, PAN Ya-juan. Design of Intelligent Screw Air Compressor Performance Testing System[J]. VACUUM, 2021, 58(1): 19 -22 .
[3] YANG Nai-heng. Analysis and Discussion on the Vacuum Pump for Vacuum Degassing[J]. VACUUM, 2021, 58(1): 29 -32 .
[4] WANG Xun. Vacuum Measurement and Application for Aerospace[J]. VACUUM, 2021, 58(1): 15 -18 .
[5] ZHANG Shi-wei, SUN Kun, HAN Feng. Discussion on Several Common Problems in Screw Vacuum Pump Design[J]. VACUUM, 2021, 58(1): 23 -28 .
[6] . [J]. VACUUM, 2020, 57(6): 84 -86 .
[7] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation[J]. VACUUM, 2021, 58(1): 10 -14 .
[8] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M[J]. VACUUM, 2021, 58(1): 33 -37 .
[9] ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang. Review on Semi-Conductive ZnO Thin Film Prepared by HiPIMS[J]. VACUUM, 2021, 58(1): 72 -77 .
[10] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow[J]. VACUUM, 2021, 58(1): 38 -44 .