VACUUM ›› 2021, Vol. 58 ›› Issue (5): 77-79.doi: 10.13385/j.cnki.vacuum.2021.05.13
• Measurement and Control • Previous Articles Next Articles
CHEN Jia-rong, WANG Dong-chen, PENG Mai-ju
CLC Number:
[1] VLASOV Y A, MCNAB S J.Losses in single-mode silicon-on-insulator strip waveguides and bends[J]. Opt. Express, 2004, 12(8): 1622-1631. [2] LUO L W, OPHIR N, CHEN C P, et al.WDM-compatible mode-division multiplexing on a silicon chip[J]. Nat.Commun, 2014, 5(1): 3069. [3] PARK H, SYSAK MN, CHEN H.Device and integration technology for silicon photonic transmitters[J]. J.Sel.Top.Quantum Electron, 2011, 17(3): 671-688. [4] ROELKENS G, BROUCKAERT J, VAN THOURHOUT D, et al.Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene[J]. Journal of The Electrochemical Society, 2006, 153(12): 1015-1019. [5] BOGAERTS W, BAETS R.Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J].J.Lightwave Technol, 2005, 23(1): 401-412. [6] NORMAN J C, JUNG D, ZHANG Z, et al.A Review of high performance quantum dot lasers on silicon[J]. J Quantum Electrron., 2019, 55(2): 1321-1327. [7] CHEN S, LI W, WU J.et al.Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J].Nat.Photonics, 2016, 10(5): 307-311. [8] LIU A Y, ZHANG C, NORMAN J, et al.High performance continuous wave 1.3μm quantum dot lasers on silicon[J]. Appl.Phys.Lett., 2014, 104(4): 041104. [9] MAGDEN E S, LI N, PURNAWIRMAN J D B, et al. Monolithically-integrated distributed feedback laser compatible with CMOS processing[J]. Opt.Express, 2017, 25(15): 18058-18065. [10] HULME J C, DOYLEND J K, BOWERS J E.Widely tunable Vernier ring laser on hybrid silicon[J]. Opt.Express, 2013, 21(17): 19718-19722. [11] CREAZZO T, MARCHENA E, KRASULICK S B, et al.Integrated tunable CMOS laser[J]. Opt.Express, 2013, 21(23): 28048-28053. [12] DUAN G H, JANY C, L E LIEPVRE A, et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon[J]. J.Sel.Top.Quantum Electron., 2014, 20(4): 6100213. [13] CHU T, FUJIOKA N, ISHIZAKA M.Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators[J]. Opt.Express, 2009, 17(16): 14063-14068. [14] ZILKIE AJ, SEDDIGHIAN P, BIJLANI B J, et al.Power-efficient III-V/silicon external cavity DBR lasers[J]. Opt.Express, 2012, 20(21): 23456-23462. [15] TANAKA S, JEONG S H, SEKIGUCHI S, et al.High-output-power,single wavelength silicon hybrid laser using precise flip-chip bonding technology[J]. Opt.Express, 2012, 20(27): 28057-28069. [16] LIU Y, DING R, MA Y, et al.Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s[J]. Opt.Express, 2014, 22(13): 16431-16438. [17] YARIV A.Universal relations for coupling of optical power between microresonators and dielectric waveguides[J]. Electron.Lett., 2000, 36(4): 321-322. [18] BOGAERTS W, DE HEYN P, VAERENBERGH T V, et al.Silicon microring resonators[J]. Laser Photonics Rev., 2012, 6(1): 47-73. [19] ZHUANG L, MARPAUNG D, BURLA M, et al.Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing[J]. Opt.Express, 2011, 19(23): 23162-23170. |
No related articles found! |
|