欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (4): 69-74.doi: 10.13385/j.cnki.vacuum.2023.04.13

• Vacuum Acquisition System • Previous Articles     Next Articles

Development of Circulating and Boosting Pump for Tritium Transportation

YI Jun, ZHOU Fan, DENG He, YUE Xiao-bin, WANG Bao-rui, HAN Zhi-jia, WANG Jin   

  1. Institute of Materias, China Academy of Engineering Physics, Mianyang 621908, China
  • Received:2022-08-11 Online:2023-07-25 Published:2023-07-26

Abstract: For the requirement of tritium gas transportation, a set of bellow pump is developed, which includes a boosting pump and a rocking pump. Swashplate-rod with piston structure is developed for the boosting pump, in which three reciprocating plunger pistons are adopted to get high compression ratio to deal with the low vacuum and booster. Rocking piston is adopted in rocking pump to increase the gas flow and decrease the vacuum pressure, which ensure the inlet pressure is 50Pa and outlet pressure is 0.4MPa. Double bellows are used to separate the tritium from the shaft system, which can prevent the transporting gas from any pollution. Helicoflex sealing is used to separate the tritium from the environment, and leaking ratio of 1.0×10-7Pa·m3/s is achieved. The self developed circulating and boosting pump can meet the request of tritium boosting transportation.

Key words: CFETR, ITER, tritium, radiant gas, clean vacuum, booster pump, bellow pump

CLC Number:  TL353.12

[1] 赵林杰, 肖成建, 龙兴贵, 等.聚变能源中的氚化学与氚工艺研究进展及展望[J].核化学与放射化学, 2019, 41(1): 40-59.
[2] WAN Y X, LI J G, LIU Y, et al.Overview of the present progress and activities on the CFETR[J]. Nuclear Fusion, 2017, 57: 102009.
[3] 蒋国强, 罗德礼, 陆光达, 等.氚和氚的工程技术[M].北京: 国防工业出版社, 2007.
[4] 彭述明, 陈志林, 周晓松. 聚变能源中氚安全研究进展及展望[J]. 中国科学:物理学、力学、天文学, 2022, 52(2): 117-124.
[5] 彭述明, 周晓松, 陈志林. 氚化学与氚分析进展与展望[J]. 核化学与放射化学, 2020, 42(6): 498-512.
[6] 朱佐龙. 脉冲聚变堆氚循环模型的研发与应用[D]. 合肥: 中国科学技术大学, 2017.
[7] CALDWELL-NICHOLS C J, GLUGLA M, WELTE S, et al. Requirements and selection criteria for the mechanical pumps for the ITER tritium plant[J]. Fusion Engineering & Design, 2005, 75-79: 663-666.
[8] MORGAN G A.Performance testing of a potential replacement for Normetex pump[J]. Fusion Science & Technology, 2017, 71(4):478-484.
[9] 上官文斌, 张鹏, 郭一鸣, 等. 膜片式真空泵的抽气性能计算与测试分析[J]. 华南理工大学学报(自然科学版), 2015, 43(8): 55-61.
[10] 丁宏铃. 200m3隔膜泵隔膜的研制[J].世界橡胶工业, 1998, 25(4): 31-32.
[11] 高涵. 隔膜泵膜片的设计研究[D]. 沈阳: 沈阳工程学院, 2020.
[12] 邓礼平, 薛宽荣. 一种适用于新堆的零泄漏循环泵[J]. 原子能科学技术, 2009, 43(增刊2): 279-282.
[13] 徐曦, 姜元, 高瑞祥, 等.爪式无油增压传输真空泵的设计[J]. 真空, 2005, 42(5): 8-9.
[14] 李公社. UF6加压泵设计制造与取料试验研究[D].兰州: 兰州大学, 2015.
[15] 柯尊荣, 朱玉泉. 斜盘连杆式海(淡)水轴向柱塞泵及其实验研究[J]. 液压与气动, 2006(10): 72-74.
[16] 周宝洪, 朱正洪, 张祖球, 等.波纹管密封机械真空泵的研制[J]. 真空科学与技术学报, 1983(3): 17-23.
[17] 张立成, 王银坤. 直联式无油机械真空泵的研制[J]. 真空科学与技术学报, 1983(4): 11-20.
[18] 严东海, 王志文, 王明旭, 等. 托卡马克中的超高真空技术[J]. 核聚变与等离子体物理, 2000, 20(4): 213-219.
[19] 王健, 核电站压力容器关键零部件实现国产化[J]. 中国设备工程, 2017(1): 4.
[20] 胡文盛, 洪均. 反应堆压力容器密封环国产化替代研究[J]. 核动力工程, 2020, 41(6): 172-176.
[21] 肖涛, 周凡, 曾明浩. 摇摆柱塞泵运动机构的参数化设计与运动仿真[J]. 机械传动, 2015, 39(4): 81-83.
[22] 徐远, 易均, 邓合, 等. 基于结构反求的折线轴无试重动平衡方法[J]. 振动与冲击, 2019, 38(22): 263-270.
[1] LI Zhuo-hui, LU Tong-shan, LIU Jia-lin, SUN Song-gang, DONG Dong, SHI Cheng-tian, LI Can-lun, ZHANG Rui. Approximate Calculation Method of Decompression Time in Rapid Decompression Environment Simulation System [J]. VACUUM, 2022, 59(3): 25-28.
[2] YIN Ji-ping, QIAO Hong, LIN Zeng, BA De-chun. Data Processing System of Single Langmuir Probe Based on LabVIEW [J]. VACUUM, 2020, 57(6): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .