欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 9-14.doi: 10.13385/j.cnki.vacuum.2023.06.02

• Measurement and Control • Previous Articles     Next Articles

Research Progress in Quantization of Vacuum Metrology

ZHENG Yi-ming, WANG Xu-di, WU Jun   

  1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2023-03-09 Online:2023-11-25 Published:2023-11-27

Abstract: The Quantum Pascal project under the european metrology programme for innovation and research(EMPIR) aims to develop a photon-based vacuum measurement standard for converting the international unit of pressure(Pa) into a unit of gas density. The project focuses on various optical methods, including the refractive index method, absorption spectroscopy, and the cold atom method, to establish quantum vacuum standards. These methods offer high precision and repeatability, and each has its unique features. The refractive index method and absorption spectroscopy rely on the interaction mechanism of gas molecules in vacuum, while the cold atom method uses the properties of Bose-Einstein condensed matter. In this paper, these principles and application devices are introduced in detail, providing a valuable reference for the development of quantum vacuum metrology technology. The advancement of these technologies will enable more accurate vacuum measurements and more precise scientific research, which is crucial for various fields, such as semiconductor manufacturing, materials science, and quantum information.

Key words: vacuum metrology, quantum vacuum, refractive index method, cold atom, absorption spectroscopy

CLC Number:  TB771

[1] THAKUR V, YADAV S, KUMAR A.Realization of quantum pascal using natural fundamental physical constants[J]. Mapan, 2020, 35(4): 595-599.
[2] 李得天, 成永军, 习振华. 量子真空标准研究进展[J]. 宇航计测技术, 2018, 38(3): 1-15.
[3] 习振华, 李得天, 成永军, 等. 光学方法在真空计量中应用研究进展[J]. 真空与低温, 2016, 22(6): 311-318.
[4] 许玉蓉, 刘洋洋, 王进, 等. 基于气体折射率方法的真空计量[J]. 物理学报, 2020, 69(15): 250-256.
[5] SONG H, KIM J, WOO S.Development of a refractive index measurement system for vacuum pressure measurement[J]. Journal of the Korean Physical Society, 2021, 78(2): 124-129.
[6] RICKER J, HENDRICKS J, EGAN P, et al.Towards photonic based pascal realization as a primary pressure standard[J]. Journal of Physics: Conference Series, 2018, 1065(16): 2-6.
[7] SILVESTRI Z, BENTOUATI D, OTAL P, et al.Towards an improved helium-based refratometer for pressure measurements[J]. Acta IMEKO, 2021, 9(5): 305-309.
[8] 贾文杰, 习振华, 范栋, 等. 基于Fabry-Perot激光谐振腔的量子真空计量技术研究[J]. 光学学报, 2020, 40(22): 149-156.
[9] ZAKRISSON J, SILANDER I, FORSSÉN C, et al. Simulation of pressure-induced cavity deformation-the 18SIB04 Quantumpascal EMPIR project[J]. Acta IMEKO, 2021, 9(5): 281-286.
[10] SILANDER I, FORSSÉN C, ZAKRISSON J, et al. An invar-based fabry-perot cavity refractometer with a gallium fixed-point cell for assessment of pressure[J]. Acta IMEKO, 2021, 9(5): 293-298.
[11] ZELAN M, SILANDER I, FORSSÉN C, et al. Recent advances in fabry-perot-based refractometry utilizing gas modulation for assessment of pressure[J]. Acta IMEKO, 2020, 9(5): 299-304.
[12] AXNER O, SILANDER I, FORSSÉN C, et al. Ability of gas modulation to reduce the pickup of fluctuations in refractometry[J]. Journal of the Optical Society of America B, 2020, 37(7): 2419-2436.
[13] SILANDER I, HAUSMANINGER T, FORSSÉN C, et al. Gas equilibration gas modulation refractometry for assessment of pressure with sub-ppm precision[J]. Journal of Vacuum Science & Technology B, 2019, 37(4): 042901.
[14] SILANDER I, HAUSMANINGER T, ZELAN M, et al. Gas modulation refractometry for high-precision assessment of pressure under non-temperature-stabilized conditions[J]. Journal of Vacuum Science & Technology A, 2018, 36(3): 03E105.
[15] FORSSÉN C, SILANDER I, SZABO D, et al. A transportable refractometer for assessment of pressure in the kPa range with ppm level precision[J]. Acta IMEKO, 2020, 9(5): 287-292.
[16] 李毅, 李得天, 王多书. 冷原子量子真空计量技术研究进展[J]. 真空与低温, 2019, 25(3): 145-155.
[17] MAKHALOV V, MARTIYANOV K, TURLAPOV A.Primary vacuometer based on an ultracold gas in a shallow optical dipole trap[J]. Metrologia, 2016, 53(6): 1287-1294.
[18] FEDCHAK J, ABBOTT P, HENDRICKS J, et al.Review article:recommended practice for calibrating vacuum gauges of the ionization type[J]. Journal of Vacuum Science & Technology A, 2018, 36(3): 030802.
[19] BAYARD R T, ALPERT D.Extension of the low pressure range of the ionization gauge[J]. Review of Scientific Instruments, 1950, 21(6): 571-572.
[20] ECKEL S, BARKER D S, FEDCHAK J A, et al.Challenges to miniaturizing cold atom technology for deployable vacuum metrology[J]. Metrologia, 2018, 55(5): 182-193.
[21] LACKNER M.Tunable diode laser absorption spectroscopy(TDLAS) in the process industries-a review[J]. Reviews in Chemical Engineering, 2007, 23(2): 65-147.
[1] LI Xiao-gang, HU Yong, GAO Feng, HU Xiang-e, GAN Zhi-hua. Design of Gas Adsorption Performance Measurements at Low Temperature and Low Pressure [J]. VACUUM, 2023, 60(1): 42-45.
[2] LU Shao-bo, ZHANG Ji-feng, HAN Yong-chao, YANG Kun, TANG Rong. Development of Dynamic Calibration System for Special Vacuum Tester [J]. VACUUM, 2022, 59(6): 56-59.
[3] YANG Su-xia, SHEN Wen-zhuo. Design of Control System Based on Intelligent Composite Coating Equipment [J]. VACUUM, 2022, 59(1): 68-73.
[4] WANG Xun. Vacuum Measurement and Application for Aerospace [J]. VACUUM, 2021, 58(1): 15-18.
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer [J]. VACUUM, 2018, 55(5): 15-18.
[6] SUN Dong-hua, CHEN Lian, ZHAO Lan, ZHANG Rui-fang, DING Dong, ZHANG Rui-nian. Research on Detection Methods of Cavity Pressure Change of Semitight Devices [J]. VACUUM, 2019, 56(4): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .