欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 15-21.doi: 10.13385/j.cnki.vacuum.2023.06.03

• Measurement and Control • Previous Articles     Next Articles

Numerical Simulation Study of Leakage Flow Field on the Wall Surface of Condenser Pipe

ZHANG Hong-xing1, SUI Xiao-xiang1, WANG Hai-jun1, LIU Zhong-hua1, CHEN Huai-dong1, ZHANG Hai-feng2   

  1. 1. CGN Inspection Technology Co., Ltd., Suzhou 215004, China;
    2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2022-09-02 Online:2023-11-25 Published:2023-11-27

Abstract: Condenser is a cooling device in the thermal cycle of a nuclear power plant. The exhausting steam undergoes heat exchange with the cooling water in the condenser to form condensed water for another thermal cycle. Due to the seawater used as cooling water, the leakage of condenser will lead to pollution of steam generator in the secondary circuit, which will affect the safety of the nuclear power plant. In this paper, the flow characteristics of the liquid phase leakage process of the condenser were studied numerically and experimentally. The leakage jet flow field under different flow conditions was analyzed by Euler-Euler two-phase flow model and k-ε turbulence model. The leakage process was measured and analyzed by particle image velocimetry and compared with numerical simulation results. The results show that the leakage amount is related to pressure difference between the gas space and coolant rather than the liquid phase flow condition in the pipeline during the two-phase leakage. The detection time of the leak can be set within 0.003s, and the existence of two backflow vortexes near the leakage jet will lead to the return of the tracer gas, which may have an impact on the mass transfer and convective diffusion of the tracer gas. For the current case, the mass flow rate of the coolant leakage is about 3.925×10-3-9.813 ×10-3kg/s.

Key words: nuclear power plant, condenser, vacuum jet, leak detection, PIV experimental validation

CLC Number:  TL48;O359+.1

[1] 刘昱, 刘佩, 秦娟. 内陆核电厂放射性废液排放的主要问题分析[J]. 辐射防护, 2013, 33(5): 269-274.
[2] GUOAN Y, HUI H, RUSHAN L, et al.R&D activities on actinide separation in China[J]. Procedia Chemistry, 2012, 7: 215-221.
[3] 张贤山, 孙培伟, 魏新宇. 汽轮机蒸汽旁路排放系统的动态特性分析[J]. 核动力工程, 2021, 42(增刊2): 25-28.
[4] 李开盈, 王旭, 陈松, 等. 核电厂凝汽器传热管缺陷处理与分析[J]. 产业与科技论坛, 2022, 21(7): 44-46.
[5] 陈勇. 核电厂凝汽器泄漏的探究[J]. 科技视界, 2016(9): 8-11.
[6] 李勇, 曹丽华, 赵金峰, 等. 考虑更多因素的凝汽器最佳真空确定方法[J]. 中国电机工程学报, 2006(4): 71-75.
[7] 叶长流, 黄怡彬, 郭昂, 等. 凝汽器泄漏对二回路水质的影响及其对策研究[C]//中国核学会2017年学术年会. 2017: 261-266.
[8] 何洁, 高虎, 何鹰. 核电站凝汽器检漏装置的设计及应用[J]. 装备制造技术, 2013(9): 146-148.
[9] 季怡萍, 邓先钦, 徐鹏, 等. SF6气体泄漏红外成像检测的技术分析和应用探讨[J]. 红外技术, 2022, 44(2): 198-204.
[10] 陈大兵, 丁辉, 李晓红, 等. 电厂凝汽器管泄漏的在线检测[J]. 江苏电机工程, 2004(4): 46-47.
[11] 王建夫, 张志胜, 安国印, 等. 气体示踪技术在盐穴地下储气库微泄漏监测中的应用[J]. 天然气工业, 2021, 41(12): 156-164.
[12] 窦梓元. 水体中天然气管道泄漏扩散规律及后果分析[D]. 成都: 西南石油大学, 2015.
[13] KELSO R M, LIM T T, PERRY A E.An experimental study of round jets in cross-flow[J]. Journal of Fluid Mechanics, 2006, 306: 111-144.
[14] LIM T T, NEW T H, LUO S C.On the development of large-scale structures of a jet normal to a cross flow[J]. Physics of Fluids, 2001, 13(3): 770-775.
[15] 孙振平, 褚孝荣, 周李军. 核电厂凝汽器检漏系统的取样点设计要求和方案[J]. 电站辅机, 2015, 36(3): 9-11.
[16] SONG Y, SHENTU Y, QIAN Y, et al.Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV[J]. Nuclear Engineering and Technology, 2021, 53(1): 79-92.
[17] 张珅榕, 蔡卫军, 闵景新. 基于欧拉多相流模型的空泡数值模拟[J]. 船海工程, 2015, 44(1): 103-106.
[18] TROSHKO A A, HASSAN Y A.A two-equation turbulence model of turbulent bubbly flows[J]. International Journal of Multiphase Flow, 2001, 27(11): 1965-2000.
[19] LATEB M, MASSON C, STATHOPOULOS T, et al.Comparison of various types of k-ε models for pollutant emissions around a two-building configuration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 115: 9-21.
[20] RISSO F.Agitation,mixing,and transfers induced by bubbles[J]. Annual Review of Fluid Mechanics, 2018, 50: 25-48.
[21] 王杰, 刘东, 刘盈, 等. 失水事故分析程序临界流模型改进及验证[J]. 核动力工程, 2019, 40(1): 28-32.
[22] 李乾军, 章名耀. 压力对喷动流化床流动特性影响的数值模拟[J]. 动力工程, 2009, 29(9): 831-836.
[1] YUAN Cui-ping, SUI Xiao-xiang, LI Zheng, LI Wen-bin, ZHANG Zi-gang, ZHANG Hai-feng. Various Media Leak Study for Condenser Leak Detection Needs [J]. VACUUM, 2023, 60(4): 42-46.
[2] LIU Shun-ming, WANG Peng-cheng, LIU Jia-ming, TAN Biao, SUN Xiao-yang, WANG Yi-gang, ZHU Bang-le, SONG Hong, LI Bo, WU Xiao-lei, LI A-hong. The Vacuum Leakage Solution of CSNS DTL [J]. VACUUM, 2023, 60(3): 55-61.
[3] LI Hong-yu, SU Dong-ping, DAI Ming-qiao, SUN Li-zhi, DOU Wei, PENG Guang-dong. Design, Performance Analysis of Leak Rate Testing System for Large Spacecraft [J]. VACUUM, 2022, 59(6): 10-16.
[4] ZHANG Hai-feng, SUN Li-chen, WANG Li, LIU En-jun, SHI Ji-jun, SUN Li-zhi. Research on Leak Detection Technology for Manned Spacecraft Hatch [J]. VACUUM, 2022, 59(4): 8-11.
[5] TIAN Ming-li, QIU Li, DONG Yun-ning, CHEN Jun-ru, CHEN You-qi, TANG Rong, ZHANG Ji-feng. An Application of Ultrasensitive Leak Detection Technology Integrated in High Pumping Speed Automatic Exhaust Table [J]. VACUUM, 2022, 59(3): 63-67.
[6] SUN Peng-yuan, XUN Hua-bao, FU Wen, DONG Sheng-chao, XU Zhe. Application of Helium Leak Detecting in Printed Circuit Heat Exchanger [J]. VACUUM, 2022, 59(2): 21-25.
[7] HUANG Fan, YANG Tong-gao, GUO Chun-hai, CAO Hui, CHEN Chao. Feasibility Study on High Temperature Helium Detection of the TVS-2M Fuel Rod Without Anodic Oxidation [J]. VACUUM, 2021, 58(6): 8-12.
[8] LI Bo, HOU De-feng, WANG Xiao-dong, BA De-chun. Influence of the Position of Molecular Pump Medium Detection Port on the Performance of Helium Mass Spectrometer Leak Detector [J]. VACUUM, 2021, 58(6): 1-7.
[9] HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92.
[10] DONG Dong, JING Jia-rong, DONG De-sheng, SHI Cheng-tian, REN Wei-song, SUN Ling, CHEN Ya-hui. Vacuum Baking Facility for Contaminant Cleaning for Spacecraft [J]. VACUUM, 2021, 58(1): 51-56.
[11] YANG Nai-heng. Analysis and Discussion on the Vacuum Pump for Vacuum Degassing [J]. VACUUM, 2021, 58(1): 29-32.
[12] HUANG Fan, YE Wan-yi, QI Shi-jin, CAO Hui, GUO Chun-hai, CHEN Yao, YU Wen-xin. Effect of High Temperature on Helium Leak Test Results of the TVS-2M Fuel Rod [J]. VACUUM, 2020, 57(5): 66-69.
[13] ZHAO Teng, ZHANG Hu, LIU Xiang, WU Jian-long, ZHANG Mi, ZHOU Rong-ping. Leak Rate Test and Intelligent Detection of Mechanical Vacuum Pump System for RH Refining Furnace [J]. VACUUM, 2020, 57(4): 28-31.
[14] SHI Tong-qiang, HUANG Wei, TENG Jian, LIU Bo-tao, LV Ji-xiang. Experimental Study on Helium Recovery and Purification Device for Leak Detection Equipment of Air-conditioning Evaporator and Condenser [J]. VACUUM, 2020, 57(1): 48-50.
[15] JIN Peng-li, GONG Chun-zhi, KONG Ying, ZHANG Xin, MA Yu-shan, LIU Hai-bo, HE Tao, YUE Ling, TIAN Xiu-bo. Study on the Effectiveness of Simple and Quick Alcohol Leak Detection in Vacuum Coating Equipment [J]. VACUUM, 2019, 56(5): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .