欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 46-50.doi: 10.13385/j.cnki.vacuum.2024.03.08

• Vacuum Acquisition System • Previous Articles     Next Articles

Design of Special Planer for Machining Vacuum Pump Slide Valve

ZHANG Hui1,2, XU Jun1, JIN Jian-hua1, WANG Peng-chao1, XU Hui1, ZHANG Wen-yu3   

  1. 1. Auto School, Taizhou Vocational and Technical College, Taizhou 318000, China;
    2. Automotive Key Components Lean Manufacturing Researching Institute, Taizhou 318000, China;
    3. Taizhou Xinyu Vacuum Equipment Manufacturing Co., Ltd., Taizhou 318000, China
  • Received:2023-08-29 Published:2024-06-04

Abstract: Aiming at the problems that low machining efficiency and poor quality stability of the slotting machine, and high investment of the multi-axis CNC gantry planer in the existing machining technology of the slide valve of the vacuum pump, a special planer for machining slide valve is developed. The mechanical structure design, such as expansion and positioning, the rotation of the slide valve, the movement of the planer, and intelligent reform of the control system are carried out based on the common shaper. Using PLC control and touch screen as a human-computer interface to achieve automatic machining of the slide valve. The production verification shows that the special planer can achieve multi-axis CNC gantry planer machining efficiency, and the production efficiency and product qualification are greatly improved compared with traditional slotting machine machining.

Key words: slide valve machining, PLC control, human-computer interaction, machining efficiency

CLC Number:  TH69

[1] 钟云会, 陈仙春, 王贵, 等. 滑阀真空泵结构探索[J]. 真空, 2017, 54(6): 47-51.
[2] LI Z Q, WANG X J.New cycloid rotor profiles design under different rolling circle radii for Roots vacuum pumps[J]. SN Applied Sciences, 2022 (4): 280.
[3] 姜慧. 龙门刨床数控的改造设计[J]. 通信电源技术, 2018, 35(11): 101-102.
[4] 邓英健. 欧式门窗专用四面刨的设计与研究[D]. 哈尔滨: 东北林业大学, 2021.
[5] 周敏, 张在田, 叱金鹏, 等. 基于PLC的B2012 A型龙门刨床电气控制系统改造设计[J]. 机电工程技术, 2022, 51(10): 247-251.
[6] 李磊, 张国澎. 基于PLC的农机零部件加工中机床电气控制系统[J].农机化研究, 2022, 44(10): 193-197.
[7] 黄信兵, 刘小娟. 智能制造切削加工系统PLC控制结构设计[J]. 机床与液压, 2021, 49(13): 118-122.
[8] SUN S G.The availability improvement of CNC machine tool based on DEMATEL-ISM-QFD integration method[J]. International Journal on Interactive Design and Manufacturing, 2023(17): 69-77.
[9] 吴广益, 于光忠. 基于MATLAB的牛头刨床主切削机构运动仿真[J]. 机械工程与自动化, 2022(5): 90-92.
[10] 于振华, 姜康. 基于机械系统运动学的滑阀泵滑阀杆不平衡力的计算[J]. 真空科学与技术学报, 2016, 36(9): 999-1003.
[11] 张浩, 张合金, 翟悦, 等. 机载外挂真空容器的吊环设计及拓扑优化[J]. 真空, 2022, 59(5): 86-90.
[12] 周缘, 冉澳, 吴奕恒, 等. 基于ANSYS的MEMS离子源测试用高真空腔设计与分析[J].真空, 2022, 59(3): 16-19.
[13] 肖超, 李伟, 邵腾, 等. 基于APDL语言的牛头刨床机构运动学分析[J]. 机械工程与自动化, 2021(6): 68-70.
[14] 金俊, 查文彬, 王禹林, 等. 滚珠丝杠滚道研磨工艺试验研究[J]. 组合机床与自动化加工技术, 2018(1): 113-116.
[15] ZHANG Y S, ZHOU C G, REN S, et al.An analysis method for the transmission efficiency of the preloaded ball screw based on wear volume calculation[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineer Tribology, 2022, 236(12): 2392-2450.
[16] 龚梦辉, 韩军, 周长光, 等. 滚珠丝杠副轴向静刚度确信可靠性建模与分析[J]. 组合机床与自动化加工技术, 2022(1): 48-53.
[17] 李玉婉. 基于PLC的龙门刨床改造[D]. 兰州:兰州交通大学, 2016.
[18] MELLADO J, NÚÑEZ F. Design of an IoT-PLC: a containerized programmable logical controller for the industry 4.0[J]. Journal of Industrial Information Integration, 2022, 25: 100250.
[19] 程俊, 刘滨, 麦丽菊. 基于HMI-PLC的润滑系统节能控制开发[J]. 机电工程技术, 2019, 48(10): 44-45.
[20] 赵安, 马彬彬. 基于PLC及HMI的洗瓶机自动控制设计[J]. 机械制造与自动化, 2019, 48(4): 209-211.
[1] LI Zhi-sheng, LIU Xiao-jiang, DUAN Yu-quan, LIN Qiong, WANG Xiao-dong. Development of High-Efficiency and Energy-Saving Parylene Vacuum Coating Equipment and Its Application in Agriculture [J]. VACUUM, 2022, 59(5): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .