欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 105-109.doi: 10.13385/j.cnki.vacuum.2024.03.19

• Vacuum Technology Application • Previous Articles     Next Articles

Application of Vacuum Technology in High-temperature Superconducting Electrodynamic Suspension Transportation System

HU Hao, LI Kai, LIU Hong-tao, SHAO Qing, HAN Tian, YU Miao, LIU Hang, LI Hao-chen   

  1. CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130000, China
  • Received:2023-09-17 Published:2024-06-04

Abstract: In a high-temperature superconducting (HTS) electrodynamic suspension (EDS) transportation system, the application of vacuum technology provides a perfect vacuum environment which can obtain and maintain the superconductive performance of the coils for HTS magnets, so that it can satisfy the requirements of the train propulsion, levitation, and guidance. In this paper, the EDS transportation system principle and the structure composition of onboard HTS magnets are introduced. Through vacuum system design and vacuum acquisition equipment selection, combined with vacuum measurement and leak detection technology, the high vacuum holding system with a vacuum degree of 1×10-5 Pa and a maximum leakage rate of 1.33×10-10 Pa·m3/s for superconducting magnet was developed. And it has been stably put into service in the full elements test system of HTS EDS which is the first self-developed in China.

Key words: maglev, EDS transportation system, HTS magnet, vacuum technology

CLC Number:  U237

[1] 张京峰, 刘方, 徐鹏, 等. 超导材料性能测试样品控温方法[J]. 低温与超导, 2022, 50(6): 29-34.
[2] 金之俭, 洪智勇, 赵跃, 等. 二代高温超导材料的应用技术与发展综述[J]. 上海交通大学学报, 2018, 52(10): 1155-1165.
[3] 张平祥, 闫果, 冯建情, 等. 强电用超导材料的发展现状与展望[J]. 中国工程科学, 2023, 25(1): 60-67.
[4] SHEN B Y, ZHANG M S, LI F, et al.A novel all-superconducting propulsion and protection system for the HTS Maglev: concept, experimental verification and planning[J]. IEEE Transactions on Applied Superconductivity. 2021, 31(8): 3603405.
[5] DONG F L, HUANG Z, LI X F, et al.R&D of no-insulation HTS magnets using 2G wires in a prototype for maglev applications[J]. IEEE Transactions on Applied Superconductivity. 2018, 29(5): 4601905.
[6] CHOI S Y, LEE C Y, JO J M, et al, Sub-sonic linear synchronous motors using superconducting magnets for the hyperloop[J]. Energies, 2019, 12(24): 4611.
[7] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474.
[8] 刘文旭, 李文龙, 方进. 高温超导磁悬浮技术研究论述[J].低温与超导, 2020, 48(2): 44-49.
[9] YU Q S, WANG M, YAO G F, et al.Study on beat vibration of a high temperature superconducting EDS maglev vehicle at low speed[J]. Applied Sciences, 2023, 13(5): 3131.
[10] SHAO N, WANG M, HOU Q.Analysis on the dynamic response of an EDS maglev train based on Pacejka similarity tire model[C]// 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Dalian, China: IEEE, 2021.
[11] 吴蔚, 李凯, 邵南, 等. 电动磁浮车载高温超导磁体全断电运行特性[C]//第十届全国磁悬浮技术与振动控制学术会议(CSMLTVC10). 南京:中国振动工程学会, 2022.
[12] 刘士苋, 王磊, 王路忠, 等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报, 2023, 58(4): 734-753.
[13] 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216.
[14] 马光同, 杨文姣, 王志涛, 等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 68-74.
[15] 余浩伟, 寇峻瑜, 李艳. 600 km/h高速磁浮在国内的适应性及工程化发展[J]. 铁道工程学报, 2020, 37(12): 16-20.
[16] 李家志, 索红莉, 王毅, 等. 超导材料在磁悬浮列车上的应用进展(上)[J]. 铁道技术监督, 2020, 48(3): 38-44.
[17] 于青松, 李凯, 胡浩, 等. 超导电动悬浮应用研究与技术展望[J]. 机车电传动, 2023(4): 1-8.
[18] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198.
[19] 马光同, 杨文姣, 王志涛, 等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 68-74.
[20] 达道安. 真空设计手册[M]. 北京:国防工业出版社, 2004.
[21] 陈平丽, 刘亮. 中国首套高温超导电动悬浮全要素试验系统完成首次悬浮运行[N/OL]. 中国新闻网, 2023-03-31.http://news.cctv.com/2023/04/02/ARTI61Rjq4Io1B01ghrbVk8l230402.shtml.
[1] LEI Cheng-shuai, CHEN Guo-xin, LU Xing-yu, ZHOU Li-na, HUANG Ju, LIU Hong-wei. The Application and Development of Vacuum Technology in Production Process of High-quality Steels [J]. VACUUM, 2023, 60(2): 14-19.
[2] E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .