欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 17-21.doi: 10.13385/j.cnki.vacuum.2024.04.04

• Thin Film • Previous Articles     Next Articles

Effect of Different Experimental Conditions on Charge Carrier Mobility of α-Se Films

LI Rui-dong1, JIN Da-li2, ZHANG Mei-dong1, YU Li-ping3, WANG Jian-wei4   

  1. 1. Department of Fundamental Course, Institute of Disaster Prevention, Sanhe 065201, China;
    2. Tianjin Earthquake Agency, Tianjin 300201, China;
    3. Tianjin Information Engineering School, Tianjin 301900, China;
    4. No.7 Geological Brigade of Hebei Geology and Mineral Exploration Bureau, Sanhe 065201, China
  • Received:2023-12-12 Online:2024-07-25 Published:2024-07-29

Abstract: α-Se is an inorganic weak conductive material, and it is one of the most promising materials in the field of X-ray medical imaging and nondestructive testing, the carrier properties are of vital importance to its application. The α-Se intrinsic film was prepared under the condition of constant temperature, the surface microstructure and crystal structure of the film were tested using SEM and XRD. The effects of temperature, sampling resistance, and light pulse energy on the carrier mobility were studied by the time-of-flight method. The results show that in the temperature range of 298-338 K, the carrier transport of the α-Se is consistent with the shallow trap model. The carrier transit time is constant when the sampling resistance is not more than 5 kΩ and the optical pulse energy is not more than 3.5 μJ.

Key words: optoelectronics, α-Se film, time-of-flight method, mobility

CLC Number:  O484.3

[1] NEITZEL U, MAACK I, GÜNTHER-KOHFAHL S. Image quality of a digital chest radiography system based on a selenium detector[J]. Medical Physics, 1994, 21(1):509-616.
[2] PAPIN, PATRICK J, HUANG H K.A prototype amorphous selenium imaging plate system for digital radiography[J]. Medical Physics, 1987, 14(3): 322-329.
[3] DE MONTS H, BEAUMONT F.A new photoconductor imaging system for digital radiography[J]. Medical Physics,1989, 16(1): 105-109.
[4] ROWLANDS J A, HUNTER D M, ARAJ N.X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography[J]. Medical Physics, 1991, 18(3): 421-431.
[5] LUHTA R, ROWLANDS J A .Feasibility of a large area X-ray sensitive vidicon for medical fluoroscopy : signal and noise factors[J]. Medical Physics, 1997, 24(5): 609-620.
[6] LUHTA R, ROWLANDS J A.Feasibility of a large area X-ray sensitive vidicon for medical fluoroscopy: resolution and lag factors[J]. Medical Physics, 1997, 24(5): 621-631.
[7] ROWLANDS J R, ZHAO W, BLEVIS I M, et al.Flat panel detector for digital radiology using active matrix readout of amorphous selenium[C]//Proceedings of SPIE. Medical Imaging 1997: Physics of Medical Imaging. CA, United States: SPIE, 1997, 3032: 97-108.
[8] BOAG J W.Xeroradiography[J]. Physics in Medicine and Biology, 1973, 18(1): 3-37.
[9] LEIGA A G.Xerography in medical imaging applications[C]//Proceedings of the 4th International Symposium on Uses of Se and Te. Banff, Canada, 1989: 249-252.
[10] KASAP S O, AIYAH V, POLISCHUK B, et al.X-ray sensitivity of α-Se for X-ray imaging with electrostatic readout.[J]. Journal of Applied Physics, 1998, 83(6):2879-2887.
[11] NEITZEL U, MAACK I, GÜNTHER-KOHFAHL S. Image quality of a digital chest radiography system based on a selenium detector[J]. Medical Physics, 1994, 21(4): 509-516.
[12] KOUGHIA K, SHAKOOR Z, KASAP S O, et al.Density of localized electronic states in α-Se from electron time-of-flight photocurrent measurements[J]. Journal of Applied Physics, 2005, 97(3): 033706.
[13] 陈永庆, 张陈涛, 张建寰. 激光化学气相沉积石墨烯的基底温度场仿真[J]. 激光技术, 2015, 39(5): 648-653.
[14] 侯占杰, 唐星, 罗穆伟, 等. 激光诱导化学液相沉积Fe膜的研究[J]. 激光技术, 2016, 40(1): 136-140.
[15] 张娜, 周炳卿, 张林睿, 等. α-SiNx:H 薄膜的热丝化学气相沉积及微结构研究[J]. 激光技术, 2016, 40(3): 413-416.
[16] 时光, 梅林, 高劲松, 等. 离子束溅射、热舟和电子束法制备深紫外LaF3薄膜[J]. 激光技术, 2013, 37(5): 592-595.
[17] 占红明, 饶海波, 张化福. 基于有机电致发光显示的透明导电膜ITO[J]. 液晶与显示, 2004, 19(5): 386-390.
[18] 贾芳, 曹培江, 曾玉祥. 衬底温度对脉冲激光沉积制备ZnO性能的影响[J]. 激光技术, 2010, 34(3): 357-359.
[19] 刘强虎, 张紫浩, 刘志春, 等. 弱电导材料中载流子迁移率的测量方法研究[J]. 激光技术, 2014, 38(4): 445-448.
[20] 李瑞东, 刘雪凌, 杨健. 8-羟基喹啉铝本征薄膜的制备与性质研究[J]. 激光技术, 2018, 42(1): 78-82.
[21] 黄春辉, 李富友, 黄岩谊. 光电功能超薄膜[M].北京:北京大学出版社, 2004: 238-298.
[22] SCHER H, MONTROLL E W.Anomalous transit-time dispersion in amorphous solids[J], Physics Review B, 1975, 12(6): 2455.
[23] WU F, TIAN W J, ZHANG Z M, et al.Organic electioluminescent device based on balanced carriers injection and transportation[J]. Thin Solid Films, 2000, 363(1/2): 214-217.
[24] BASSLER H.Hopping conduction in polymers[J]. International Journal of Modern Physics, 2003, 8(7): 847-854.
[25] FORERO S, NGUYEN P H, BRUTTING W, et al.Charge carrier transport in poly(p-phenylenevinylene) light-emiting devices[J]. Physical Chemistry Chemical Physics, 1999, 1: 1769-1776.
[26] KOUGHIA K, KASAP S O.Density of states of α-Se near the valence band[J]. Journal of Non-Crystalline Solids, 2006, 352(9-20):1539-1542.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .