欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 38-42.doi: 10.13385/j.cnki.vacuum.2024.06.07

• Vacuum Acquisition System • Previous Articles     Next Articles

Segmented Integrated Vacuum Pumping System and Process Method

SUN Zhen-zhong1, SHI Min-hai1, CHEN Guang-qi1, WEI Yu-long1, WU Chen-rui1, WEI Hai-bo2   

  1. 1. Jiangsu Serlng New Energy Technology Co., Ltd., Jiangyin 214400, China;
    2. Liaoning Equipment Manufacture College of Vocational and Technology, Shenyang 110161, China
  • Received:2023-08-29 Online:2024-11-25 Published:2024-11-29

Abstract: By studying and analyzing the vacuum pumping system and process methods, a segmented integrated vacuum pumping system and process method was proposed. A system that integrates high, medium, and low vacuum pipelines, various types of vacuum units, and process control systems to achieve batch vacuum pumping of products. The computer-controlled vacuum pumping system automatically regulates the vacuum pumping process program for individual workpiece based on data collection of the process and data analysis and identification of the process database. The control system can also improve the process database and process procedures through statistical analysis of process data, thereby automatically identifying and regulating the process, prompting process parameters one by one, and providing suggestions for abnormal handling, achieving unmanned intelligent vacuum operation management. This system and process method can reduce equipment occupancy, reasonably allocate equipment operation and maintenance, improve equipment utilization, reduce energy consumption, and improve productivity and process quality.

Key words: vacuum acquisition, vacuum pumping process, process control, automation control

CLC Number:  TB751

[1] LIU J M, LEI D Q, LI Q.Vacuum lifetime and residual gas analysis of parabolic trough receiver[J]. Renewable Energy, 2016, 86(2): 949-954.
[2] REINERT W, KAHLERD, LONGONI G.Assessment of vacuum lifetime in nL-packages[C]//Electronic Packaging Technology Conference. Singapore: IEEE, 2005.
[3] 毕龙生, 聂裕民, 魏小平. 多层绝热低温容器的抽气技术[J]. 真空科学与技术学报, 1982(3): 149-156.
[4] 毕龙生, 聂裕民, 陈光奇, 等. 低温容器抽真空新工艺及其应用的经济效益[J]. 真空科学与技术学报, 1985(4): 56-61.
[5] 金新, 徐小农. 杜瓦容器或环模系统真空抽气规律[J]. 低温工程, 1992(2): 1-4.
[6] 刘凤梁, 汪荣顺, 张曙光, 等. 低温储罐抽真空工艺试验研究[J]. 低温与超导, 2004, 32(4): 50-52.
[7] 李阳, 魏蔚, 李祥东, 等. 高真空多层低温气瓶真空获得与维持的试验研究[C]//第八届全国低温工程大会. 北京, 2007: 51-55.
[8] 沈卫东, 尤振宇, 雷体平, 等. 低温容器置换工艺的探讨研究[J]. 中国化工装备, 2021, 23(2): 45-48.
[9] 李伟, 谢淑贤. 冷冻液化气体罐式集装箱抽真空系统及方法的改进与优化[J]. 中国新技术新产品, 2022(2): 95-98.
[10] 章宇庆, 李艳, 余枫, 等. 多层低温绝热容器抽真空系统设计及应用[J]. 装备制造技术, 2022(3): 33-37.
[11] Powder / Bulk Solids Group. Central vacuum system[J]. Powder / Bulk Solids, 2022, 40(6): 40.
[12] 严东海, 孙守祁. 中国环流器HL—IM装置的真空抽气系统[J]. 四川真空, 1995(1): 1-7.
[13] 李加宏, 胡建生, 王小明, 等. EAST超导托卡马克装置真空抽气系统[J]. 真空, 2010, 47(1): 11-14.
[14] 蔡潇, 曹曾, 张炜, 等. HL-2M装置真空室预抽气系统的研制[J]. 真空, 2021, 58(1): 33-37.
[15] 张成, 王秋萍, 袁毅夫, 等. 一种多点抽真空系统及多点抽真空方法: CN104274991A[P].2015-01-14.
[16] 封拥军, 周东平, 崔世甲, 等. 一种多路多控式抽真空系统设备及抽真空方法: CN113249708A[P].2021-08-13.
[17] ROCHA A P, BLANCHARD S, FRAGA L, et al.Integration of the vacuum SCADA with CERN's enterprise asset management system[C]// Proceedings of the 16th International Conference on Accelerator and Large Experimental Control Systems. Barcelona, Spain: JACoW Publishing, 2017.
[18] JEC Composites Magazine Group. RTM central vacuum system from oerlikon leybold vacuum[J]. JEC Composites Magazine, 2012 (73): 36.
[19] Chemical Engineering World Group. Central vacuum system[J]. Chemical Engineering World, 2017,52(11): 80.
[20] 刘玉魁, 杨建斌, 肖祥正. 真空工程设计[M]. 2版.北京: 化学工业出版社, 2023.
[1] YANG Hua-fei, YIN Shan-shan, LUO Gen-song, LIANG Yi-heng. Research and exploration on energy saving technology of mechanical vacuum pump [J]. VACUUM, 2019, 56(2): 37-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .