欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (2): 28-34.doi: 10.13385/j.cnki.vacuum.2025.02.04

• Vacuum Technology Application • Previous Articles     Next Articles

Study on Preparation and Properties of New Material Ceramic Tile Adhesive Under Vacuum Stable State

LU Guoxiang, WANG Zhongli   

  1. Guangxi Vocational and Technical College of Industry, Nanning 530001, China
  • Received:2024-10-12 Online:2025-03-25 Published:2025-03-24

Abstract: In order to ensure the stability and optimize the bonding properties of ceramic tile adhesives, the preparation method with vacuum technology and properties of new material ceramic tile adhesive combined were studied. The concrete surface test blocks for tile bonding according to standard tile sizes were prepared, and waterproof materials were applied to them according to indoor decoration construction scenarios. Ceramic tile adhesive prepolymer was prepared by vacuum synthesis of potassium hydrogen phthalate and toluene diisocyanate. The adhesive prepolymer was modified through Michael addition reaction to reduce biological toxicity. A vacuum drying oven was used to dry the modified adhesive prepolymer, regulating the drying process to obtain the initial adhesive product. Vacuum drying oven and circulating water vacuum pump were used to eliminate water and air interference, ensuring that the adhesive can be prepared completely in the vacuum stable state. The experimental results indicate that the Fourier transform infrared spectrum of the adhesive contains a large number of azide groups and has low biological toxicity. The contact angle between the adhesive and the surface of ceramic tiles and concrete is less than 90°. When the strain is 8%-11%, the mechanical property of the adhesive is better. When the environment temperature is below 180 ℃, the thermal stability of the adhesive is better. The application of the newly prepared ceramic tile adhesive in the field of indoor decoration construction is relatively environmentally friendly. In a vacuum stable state, the interaction between the adhesive and ceramic tile molecules is less affected by air and water molecules, and the adhesion performance is better.

Key words: adhesive preparation, vacuum stable state, vacuum drying, indoor decoration construction, new material, ceramic tile adhesive

CLC Number:  U528

[1] 蒋方新, 陈尚志, 李佩勋,等. 预应力混凝土梁缓凝粘合剂有效强度试验研究[J]. 建筑结构, 2023, 53(8): 113-118.
[2] 李慧, 罗国勤, 桑丽鹏,等. 高能固体推进剂粘合剂固化催化机理的密度泛函理论研究[J]. 固体火箭技术, 2023, 46(1): 96-101.
[3] XU J, WANG D, LEI Y, et al.Effects of combined ultrasonic and microwave vacuum drying on drying characteristics and physicochemical properties of tremella fuciformis[J]. Ultrasonics Sonochemistry, 2022, 84: 105963.
[4] STANCU C, DĘBSKI D, MICHALAK J. Construction products between testing laboratory and market surveillance: case study of cementitious ceramic tile adhesives[J]. Materials, 2022, 15(17): 6167.
[5] 纪倩, 张可, 魏振宇,等. 儿茶酚基团改性冷水鱼皮明胶组织粘合剂的制备及性能评价[J]. 功能材料, 2024, 55(4): 4191-4200.
[6] 赵泉湧, 侯传金, 刘彦军. 聚丙烯酸酯-葡聚糖体系锂电池水性正极粘合剂的制备及性能[J]. 化工新型材料, 2024, 52(3): 193-197.
[7] SUN P, MEI S, XU J F, et al.A bio-based supramolecular adhesive: ultra-high adhesion strengths at both ambient and cryogenic temperatures and excellent multi-reusability[J]. Advanced Science, 2022, 9(28): 2203182.
[8] NEJMEH K.Enhancing adhesion and water resistance in clayey adhesives mixtures: strategies for vertical and horizontal applications[D]. Paris:Université Gustave Eiffel, 2024.
[9] 李佩勋, 蒋方新, 孙悦,等. 热固型缓凝粘合剂实际张拉适用期和实际有效强度期估算方法[J]. 建筑结构, 2022, 52(13): 133-139.
[10] 沈忱, 闫石, 姚杰,等. 液态氟橡胶改性端羟基嵌段共聚醚粘合剂及其对铝粉热氧化行为的影响[J]. 兵工学报, 2022, 43(4): 780-787.
[11] RAJESH S, KRISHNAIAH R V, RAJU K V B. Experimental study on flexure behavior of partial replacement ceramic waste tiles[J]. Educational Administration: Theory and Practice, 2024, 30(4): 8143-8148.
[12] 李晓静, 文颖峰, 王勇,等. 聚(碳酸酯-醚)/乙基纤维素超分子复合物的制备及其粘接性能[J]. 高分子通报, 2023, 36(11): 1538-1549.
[13] 曹宇, 胡继林, 陈占军,等. 不同粘结剂与烧结温度对Al2O3陶瓷力学性能和显微结构的影响[J]. 粉末冶金工业, 2023, 33(5): 119-124.
[14] 刘加润, 杨紫钰, 伍芳,等. 硅负极用单宁酸复合海藻酸基双网络粘结剂性能研究[J]. 电子元件与材料, 2023, 42(10): 1174-1180.
[15] LU Y, FU W, REN H, et al.Preparation and application of high-performance composite polymer emulsion cement waterproof coatings[J]. Pigment & Resin Technology, 2024, 53(2): 154-163.
[16] 刘俊明, 章林, 张百成,等. 粘结剂喷射成形多孔Inconel 625合金的孔隙结构及力学性能研究[J]. 航空制造技术, 2023, 66(18): 79-85.
[17] 谭青焕, 张友寿, 夏露,等. 聚丙烯酰胺对磷酸盐粘结剂及其热硬砂的性能影响[J]. 铸造, 2023, 72(9): 1122-1126.
[18] 吴琛, 储福玮, 龚明子,等. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 159-166.
[19] BAE D, LEE J W, RYU D H.Enantio-and diastereoselective michael addition of cyclic ketones/aldehydes to nitroolefins in water as catalyzed by proline-derived bifunctional organocatalysts[J]. The Journal of Organic Chemistry, 2022, 87(24): 16532-16541.
[20] 曾芳磊, 宋柯蒙, 常世烨,等. 用于Li-S电池硫正极的新型水性粘结剂的研究[J]. 电源技术, 2022, 46(11): 1294-1297.
[21] 赵俊捷, 陶文武, 曾利建,等. 基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能[J]. 复合材料学报, 2023, 40(2): 753-760.
[22] 崔亚楠, 孙琪, 任晓燕,等. 基于原位电化学石英晶体微天平技术的硅基负极粘结剂性能分析[J]. 分析化学, 2022, 50(3): 384-391.
[23] 单连杰. 外墙保温瓷砖粘合剂的制备方法与施工工艺[J]. 粘接, 2023, 50(8): 31-34.
[24] 岳明, 洪晓明, 张泽亮. 粘合剂对聚合物复合预浸料热压罐成型的影响及工艺参数研究[J]. 粘接, 2023, 50(3): 94-97.
[25] 张世超, 武令豪, 孙现凯,等. 超低导热系数多层复合材料低气压环境隔热性能[J]. 现代技术陶瓷, 2023(增刊1): 442-450.
[26] 刘诗梦, 赵环宇, 王杰,等. 真空技术在先进陶瓷制备中的应用[J]. 真空, 2024, 61(4): 85-91.
[27] ZHAI Y, BAO Y, NING T, et al.Room temperature fabrication of magnetic covalent organic frameworks for efficient enrichment of parabens in water[J]. Journal of Chromatography A, 2023, 1692: 463850.
[1] SU Tian-yi, ZHANG Zhi-jun, HAN Jing-xue. Numerical Simulation of Microwave Vacuum Drying Using Two-dimensional Axi-symmetric Model [J]. VACUUM, 2020, 57(4): 60-65.
[2] PENG Run-ling, YIN Sha-sha, WEI Yan, LIU De-rong, WANG Ning. Preparation of Inorganic Nanopowders by Vacuum Freeze-drying [J]. VACUUM, 2019, 56(5): 77-84.
[3] WANG Chuan-bo, DONG Hui. Vacuum drying of American industrial hemp and its enlightenment to China vacuum drying industry [J]. VACUUM, 2019, 56(3): 57-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .