欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2019, Vol. 56 ›› Issue (5): 77-84.doi: 10.13385/j.cnki.vacuum.2019.05.16

Previous Articles     Next Articles

Preparation of Inorganic Nanopowders by Vacuum Freeze-drying

PENG Run-ling, YIN Sha-sha, WEI Yan, LIU De-rong, WANG Ning   

  1. School of Mechanical Engineering, Xi 'an Technological University, Xi'an 710021, China
  • Received:2018-08-26 Published:2019-10-15

Abstract: Vacuum freeze-drying (referred to as freeze-drying ) is carried out at low temperature and low pressure. The as-prepared powder has less hard agglomeration, small and uniform particle size, which has been developed as an important method for preparing inorganic nanopowders. This review summarizes the latest advance and techniques in preparation of inorganic nanopowders by freeze-drying method. The main problems and development directions in this area are discussed.

Key words: vacuum freeze drying, spray freeze drying, inorganic nanometer powder, vacuum drying equipment

CLC Number: 

  • TB44
[1] 高福成. 冻干食品[M]. 北京:轻工业出版社, 1998.
[2] Schnettler F J, Monforte F R, Rhodes W W.A Cryochemical Method for Preparing Ceramic Materials[J], Sci. Ceram, 1968,4:79.
[3] G.-W.厄特延, P. 黑斯利. 冷冻干燥[M]. 徐成海,彭润玲,刘军,等译.北京:化学工业出版社, 2005.
[4] Omatete O O.Gelcasting-A New Ceramic Forming Process[J]. Cerem Bull, 1991,70.
[5] 蒋亚宝,聂祚仁,席晓丽,等. 冷冻干燥技术在材料制备领域的应用研究进展[J]. 真空科学与技术学报, 2006, 26(6):469-474.
[6] 刘军,徐成海. 真空冷冻干燥法制备工业纳米微粉材料的研究现状与进展:第七届全国冷冻干燥学术交流会论文集[C].上海:中国制冷学会, 2002.
[7] Torikai N, Meguro T, Sasamoyo T, et al.Preperation of Fine Particles of Spinel-type Mn-Co-Ni Oxide by Freeze-drying[J]. Nippon Kagaku Kaishi, 1984, 1984.
[8] Nikolic N, Mancic L, Marinkovic Z, et al.Preparation of fine oxide ceramic powders by freeze drying[J]. Annales De Chimie Science Des Matériaux, 2001, 26(5):35-41.
[9] Bermejo E, Becue T, Lacour C, et al.Synthesis of nanoscaled iron particles from freeze-dried precursors[J]. Powder Technology, 1997, 94(1):29-34.
[10] Yun C K, Park S B, Lenggoro I W, et al.Preparation of nonaggregated Y2O3 : Eu phosphor particles by spray pyrolysis method[J]. Journal of Materials Research, 1999, 14(6):2611-2615.
[11] ManićL, MarinkovićZ, MiloševićO. Synthesis of Bi-based superconducting powders through the freeze drying[J]. Materials Chemistry & Physics, 2001, 67(1):288-290.
[12] Lee D W, Ha G H, Kim B K.Synthesis of Cu-Al2O3, nano composite powder[J]. Scripta Materialia, 2001, 44(8):2137-2140.
[13] Lenggoro I W, Itoh Y, Iida N, et al.Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis[J]. Materials Research Bulletin, 2003, 38(14):1819-1827.
[14] 陈祖耀,钱逸泰,万岩坚,等. 低温冷冻干燥超微粉制备陶瓷超导材料[J]. 低温物理学报, 1988(1):10-13.
[15] 陈祖耀,万岩坚,戎晶芳,等. 喷雾冷冻干燥制备复合氧化物超细粉的研究[J]. 无机材料学报, 1989(2):157-163.
[16] 杨卓如,程江,涂伟萍,等. 冷冻干燥制备超细磁粉实验研究[J]. 化学工程, 1999(3):19-20.
[17] 刘继富,吴厚政,谈家琪,等. 冷冻干燥法制备MgO-ZrO2超细粉末[J]. 硅酸盐学报,1996(1):105-108.
[18] 成宏伟,姜长印,何向明,等. 纳米氢氧化镍的制备及其电化学性能研究[J]. 电源技术, 2004, 28(5):285-287.
[19] 李阳兴,姜长印,万春荣. 喷雾干燥法制备LiCoO2超细粉[J]. 无机材料学报, 1999, 14(4):657-661.
[20] 刘军,徐成海,张世伟. 真空冷冻干燥法制备银纳米粉体的实验研究[J]. 真空科学与技术学报, 2007, 27(1):37-41.
[21] 彭润玲,韩少星,曾群锋,等. 真空冷冻干燥法制备纳米铜粉的实验研究[J]. 真空科学与技术学报, 2016, 36(2):217-222.
[22] Machado F F, Fodran E J, Kaufman M J.Preparation of Zinc Oxide Nanopowder by Freeze-Drying[C]// Materials Science Forum. 2002:71-76.
[23] Jeong J H, Lim H M, Kim D S, et al. Preparation of Nano-Sized ZnO Powder by Freeze-Drying[J]. Materials Science Forum, 2009, 620-622:461-464.
[24] Carolina Tallón, Rodrigo Moreno, M a Isabel Nieto. Synthesis of γ-Al2O3, nanopowders by freeze-drying[J]. Materials Research Bulletin, 2006, 41(8):1520-1529.
[25] Tachiwaki T, Sugimoto J, Ito T, et al.Characterization of freeze-dried powders prepared by alkoxide route for YBCO superconductors[J]. Applied Surface Science, 1996, 100:272-276.
[26] Mann R, Laishram K, Ahmed S A, et al.Sol Freeze Dry Nd:YAG Nanopowder Synthesis and Sinterability Studies[J]. Defence Science Journal, 2015, 65(5):418-422.
[27] Hao G, Liu J, Gao H, et al.Preparation of Nano‐Sized Copper β‐Resorcylate (β‐Cu) and its Excellent Catalytic Activity for the Thermal Decomposition of Ammonium Perchlorate[J]. Propellants Explosives Pyrotechnics, 2016, 40(6):848-853.
[28] Tallón C, Moreno R, Nieto M I.Synthesis of ZrO2, Nanoparticles by Freeze Drying[J]. International Journal of Applied Ceramic Technology, 2009, 6(2):324-334.
[29] 刘军,徐成海,窦新生. 真空冷冻干燥法制备纳米氧化铝陶瓷粉的实验研究[J]. 真空, 2004, 41(4):80-83.
[30] 刘军,张世伟,徐成海. 铜氨络合物冷冻干燥法制备氧化铜纳米粉体的实验研究[J]. 真空, 2008, 45(5):6-9.
[31] 刘军. 真空冷冻干燥法制备无机功能纳米粉体的研究[D]. 东北大学, 2006.
[32] 许国花, 李先国, 冯丽娟. 溶胶-凝胶法与冷冻干燥技术结合制备纳米氧化铁[J]. 青岛科技大学学报(自然科学版), 2003, 24(4):354-357.
[33] 马清,赵惠忠. 改性共沉淀--真空冷冻干燥制备部分稳定ZrO_2纳米粉体[C]// 全国纳米材料会议. 2005.
[34] 田拴宝, 尚学芳, 李升宪. 真空冷冻干燥结合微乳液法制备纳米ZnO[J]. 光谱实验室, 2012, 29(3):1446-1448.
[35] 刘祥志,朴玲钰,毛立娟,等. 真空冷冻干燥制备高比表面积纳米氧化铝[J]. 物理化学学报, 2010, 26(4):1171-1176.
[36] 赵惠忠,葛山,张鑫,等. 共沉淀-真空冷冻干燥法制备纳米MgAl2O4粉体[J]. 耐火材料, 2005, 39(3):168-171.
[37] 周志鹏,杨付,陈晶,等. 共沉淀-冻干法制备钇铝石榴石纳米粉体的研究[J]. 激光与光电子学进展, 2011, 48(10):000132-135.
[38] 张鑫,赵惠忠,马清,等. 真空冷冻干燥法制备纳米尖晶石[J]. 稀有金属材料与工程, 2005, 34(s1):78-81.
[39] 王龙祥. 纳米RDX的制备及其在PBX炸药中的应用探索研究[D]. 南京理工大学, 2014.
[40] 王海丽,田庭燕,袁雷,等. 溶胶-凝胶和冷冻干燥法制备Nd∶YAG纳米粉体及透明陶瓷的制备[J]. 硅酸盐通报, 2013, 32(12):2564-2567.
[41] 朱传江. 冷冻干燥工艺原理及相关设备装置[J]. 齐鲁药事, 2006, 25(8):503-504.
[42] Demarco F W. Bulk freeze drying using spray freezing and agitated drying:US9945611B2[P].2018-04-17.
[43] 唐海谊,杜祯,黎畅明,等. 一体化喷雾冷冻干燥设备及方法: CN 101441030 A[P].2009-05-27.
[44] 彭润玲,肖明春,刘德荣,等.一种多功能干燥设备:201820499490.8[P].2018-04-10.
[45] 佚名. 国内实验室用喷雾冷冻干燥机开发成功[J]. 食品与发酵工业, 2012, 38(3):48-48.
[1] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .