欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (3): 1-8.doi: 10.13385/j.cnki.vacuum.2025.03.01

• Vacuum Metallurgy and Thermal Engineering •     Next Articles

Effect of Coil Size and Layout on Temperature Field of Induction Furnace for 12-inch Silicon Carbide Single Crystal Growth

QIU Rongsheng, LI Jianchang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2024-10-21 Online:2025-05-25 Published:2025-05-23

Abstract: Large-size silicon carbide (SiC) single crystal is the key to fabricate high-quality power devices and radio frequency devices. The main growth technique is physical vapor transport method, in which the chamber temperature field greatly affects the crystal growth rate and quality. In this paper, the influence of induction coil size and layout parameters is numerically studied to optimize the temperature field of induction furnace for the 12-inch SiC single crystal growth. The results show that reducing the coil position or decreasing the coil/crucible height ratio can reduce the radial temperature gradient of the seed crystal, and increase the axial temperature gradient of the growth chamber. It can thus improve the quality of single crystal and increase the growth rate. Compared to the coil position at 0 mm, positioning the coil at -200 mm reduces the radial temperature gradient of the seed crystal by approximately 13%, while increases the axial temperature gradient in the growth cavity by 8%. When the coil / crucible height ratio decreases from 2 to 0.75, the radial temperature gradient of the seed crystal decreases by about 5.4%, and the axial temperature gradient of the growth cavity increases by 2.1%. However, the turn-height to coil-distance proportion, diameter and turn width of the coil have little influence on the temperature field in the furnace.

Key words: 12-inch SiC single crystal, induction heating, coil, physical vapor transport method, temperature field

CLC Number:  O782

[1] CHEN X F, YANG X L, XIE X J, et al.Research progress of large size SiC single crystal materials and devices[J]. Science & Applications, 2023, 12(1):28.
[2] KIMOTO T.Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2):329-351.
[3] TIAN J Q, XIE X J, ZHAO L B, et al.Origins and characterization techniques of stress in SiC crystals: a review[J]. Progress in Crystal Growth and Characterization of Materials, 2024, 70(1):100616.
[4] KIM J G, JEONG J H, KIM Y, et al.Evaluation of the change in properties caused by axial and radial temperature gradients in silicon carbide crystal growth using the physical vapor transport method[J]. Acta Materialia, 2014, 77: 54-59.
[5] BÖTTCHER K, SCHULZ D. Computational study on the SiC sublimation growth[J]. Journal of Crystal Growth, 2002, 237: 1196-1201.
[6] 范云. 高纯半绝缘4H-SiC单晶研究进展[J]. 科技创新与生产力,2019(5):69-72.
[7] 郭俊敏,郝建民. PVT法碳化硅单晶炉内矢势分布计算[J]. 黑龙江科技信息,2008(8):56.
[8] 王英民,毛开礼,徐伟,等. 坩埚在线圈中位置对大直径SiC单晶温度场影响[J]. 电子工艺技术,2011,32(6):360-363.
[9] 张群社,陈治明. 感应加热线圈对PVT法生长大直径SiC晶体的影响[J]. 西安理工大学学报,2007,23(1):83-86.
[10] 张群社,陈治明,李留臣,等. 不同耦合间隙对大直径SiC晶体生长感应加热系统的影响[J]. 人工晶体学报,2006,35(4):781-784.
[11] ZHANG S, FU H, LI T, et al.Study of effect of coil movement on growth conditions of SiC crystal[J]. Materials, 2022, 16(1): 281.
[12] YANG N J, SONG B, WANG W J, et al.Control of the temperature field by double induction coils for growth of large-sized SiC single crystals via the physical vapor transport technique[J]. CrystEngComm, 2022, 24(18): 3475-3480.
[13] WANG X L, XIE X J, YU W C, et al.Hot-zone design and optimization of resistive heater for SiC single crystal growth[J]. Journal of Materials Science, 2024, 59: 8930-8941.
[14] ZHANG Y, WEN X, CHEN N F, et al.Effects of surface size and shape of evaporation area on sic single-crystal growth using the PVT method[J]. Crystals, 2024, 14(2): 118.
[15] XU B J, HAN X F, XU S C, et al.Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with "3 separation heater method"[J]. Journal of Crystal Growth, 2023, 614: 127238.
[16] 靳丽岩,王毅,王宏杰,等. 基于8英寸的碳化硅单晶生长炉技术[J]. 电子工艺技术,2024,45(3):46-49.
[17] 石爱红,孙彩华,陈国玉,等. 碳化硅晶体生长过程的数值模拟[J]. 青海科技,2020,27(5):46-48.
[18] CHEN Y F, LIU S C, CHEN S J, et al.Diameter enlargement of SiC bulk single crystals based on simulation and experiment[J]. Materials Science in Semiconductor Processing, 2024, 178:108414.
[19] YANG C Z, LIU G X, CHEN C M, et al.Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils[J]. Applied Sciences, 2018, 8(5):705.
[20] 卢嘉铮,张辉,郑丽丽,等. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报,2022,51(3):371-384.
[21] ZHANG S T, LI T, LI Z X, et al.Thermal field design of a large-sized SiC using the resistance heating PVT method via simulations[J]. Crystals, 2023, 13(12):1638.
[22] 张磊磊. 6英寸碳化硅厚晶锭生长热场数值模拟[D]. 西安:西安理工大学, 2021.
[23] ZHANG S T, FU G Q, CAI H D, et al.Design and optimization of thermal field for PVT method 8-inch SiC crystal growth[J]. Materials, 2023, 16(2):767.
[24] 李鹏程,冯显英,李沛刚,等. 大尺寸碳化硅单晶生长环境研究[J]. 半导体光电,2021,42(5):672-677
[25] 陈彦宇. PVT法碳化硅单晶生长炉的热场仿真与优化研究[D]. 哈尔滨:哈尔滨工业大学, 2022.
[26] 谭炳源,郭江,姚栋方,等. 智能计量装置5G通讯技术关键半导体材料碳化硅制造优化[J]. 武汉大学学报(工学版), 2024,57(9):1335-1341.
[27] 杨明超,陈治明,封先锋,等. PVT法生长SiC过程生长界面形状对热应力的影响[J]. 人工晶体学报,2012,41(1):24-27.
[28] WELLMANN P J.Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.
[29] 付正博. 感应加热与节能:感应加热器(炉)的设计与应用[M]. 北京: 机械工业出版社, 2008.
[30] SU J, CHEN X J, LI Y.Numerical design of induction heating in the PVT growth of SiC crystal[J]. Journal of Crystal Growth, 2014, 401:128-132.
[1] CHEN Bolong, LI Zhongren, WANG Ying, WU Yifei, SU Ning, SONG Jiaxing, CHE Enlin, LIU Jun. Study on Temperature Uniformity of Heat Treatment System for Large Superconducting Coils [J]. VACUUM, 2025, 62(3): 33-37.
[2] HUANG Zhi-qiang, WANG Zhen-hong, LI Xin-ke, GAO Yuan, SU Ning, CHEN Ding, CHE En-lin, DAI Yu-bo, MO Fan. Research Status of MHD Sealing Technology in Vacuum Heat Treatment Equipment Based on Superconducting Coils [J]. VACUUM, 2024, 61(6): 79-84.
[3] YIN Xiang, CHEN Shi-bin, ZHANG Yan-peng, LIU Xu, LONG Lian-chun. Design and Parameter Analysis of Bias Coil for Roll to Roll Evaporation Equipment [J]. VACUUM, 2024, 61(2): 16-21.
[4] LIU Xing-long, SHEN Pei, WANG Guang-wen, YUE Xiang-ji, LIN Zeng. Influence of Cooling Structure on Vacuum Arc Source Temperature [J]. VACUUM, 2022, 59(6): 29-33.
[5] SONG Qing-zhu, E Dong-mei, WANG Ling-ling, QIAO Zhong-lu, ZHANG Zhe-kui, SUN Zu-lai. Progress in the Control Technology of Vacuum Arc Remelting Furnace, Vacuum Arc Skull Casting Furnace [J]. VACUUM, 2022, 59(6): 1-9.
[6] YU Qing-zhou, ZHANG Jun, LI Bin, GAO Ming-yi, LIU Ming-kun, CHAI Xiao-tong, GAN Shu-yi. Optimization of Temperature Field in Vacuum Degreasing Drying Tank for Air Conditioning Radiator [J]. VACUUM, 2021, 58(1): 82-85.
[7] YU Huan-qiang, ZHANG Jun-feng, DING Huai-kuang. Development of sub-cooled liquid nitrogen cooling system based on principle of decompression and cooling [J]. VACUUM, 2018, 55(6): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!