欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (3): 33-37.doi: 10.13385/j.cnki.vacuum.2025.03.06

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Study on Temperature Uniformity of Heat Treatment System for Large Superconducting Coils

CHEN Bolong1, LI Zhongren1, WANG Ying1, WU Yifei2, SU Ning1, SONG Jiaxing1, CHE Enlin1, LIU Jun1   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
  • Received:2024-10-29 Online:2025-05-25 Published:2025-05-23

Abstract: In view of the requirements of large superconducting coils in the heat treatment process, it is necessary to ensure the temperature uniformity inside the furnace cavity in a large space and a long range. The multi-field coupling finite element analysis of the temperature field distribution and flow field state inside the heating system was carried out using 1/18 furnace cavitysimulation model. The prototypewas builtcombined with the analysis results, and the data collection and analysis of the temperature field of the heating system under actual working conditions were carried out. The results show that in the simulation model,the temperature uniformity of superconducting coil at 210 ℃ heating condition is within ±25 ℃, and the temperature uniformity of heat preservation condition is within ±5 ℃, meeting the temperature uniformity requirements. The test data and simulation data are consistent, which verifies the rationality of the design.

Key words: superconducting coil, heat treatment system, temperature uniformity, fluid-structure coupling, simulation analysis

CLC Number:  TB756

[1] 王维俊. 大型Nb3Sn超导线圈热处理关键技术研究[D].合肥: 中国科学技术大学,2022.
[2] MATTHIAS B T, GEBALLE T H, GELLER S, et a1. Superconductivity ofNb3Sn[J]. Physical Review, 1954, 95(6):1435-1435.
[3] 梁明, 张平祥, 等. 磁体用Nb3Sn超导体研究进展[J].材料导报,2006,20(12):1-4.
[4] BARZI E, MAHAFIRRI S.Nb3Sn phase growth and superconducting properties during heat treatment[J]. IEEE Transactions on Applied Superconductivity,2003, 13(2):3414-3417.
[5] WANG W J, YU M, QIN JG, et al.Heat treatment for Nb3Sn coils of CFETR CSMC[J]. Journal of Superconductivity and Novel Magnetism, 2020, 33:2663-2668.
[6] WANG W J, QIN J G, YU M, et al.Heat transfer analysis during heat treatment of Nb3Sn coils for the CFETR CSMC[J]. Fusion Engineering and Design, 2021, 165:112248.
[7] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社,2004.
[8] 陶文铨. 数值传热学[M]. 2版. 西安:西安交通大学出版社,2001.
[9] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006.
[10] WANG W J, YU M, HAN H X, et al.Safety analysis of heat treatment system and TF Nb3Sn coil joint annealing experiment[J]. IEEE Transactions on Applied Superconductivity, 2021,31(8):6000805.
[11] 章杰. 台车式热处理炉膛内流场和温度场的数值模拟[D].沈阳:东北大学,2008.
[12] 刘宇佳,李勇,付天亮,等. 基于Fluent软件的辊底式热处理炉数值分析[J]. 金属热处理,2014(8):128-131.
[13] 史煜宏,姜泽毅,武文斐. 连续式钢管热处理炉热工过程数值模拟[J]. 包头钢铁学院学报,2004,23(1):52-56.
[14] 谢龙汉,赵新宇,张炯明. ANSYS CFX流体分析及仿真[M]. 北京:电子工业出版社,2012.
[15] 刘成柱. ANSYS Workbench 17.0 热力学分析实例演练[M]. 北京:机械工业出版社,2017.
[16] XIU H H, XU T, TANG J, et al.Research on the temperature uniformity of vacuum furnace and size optimization of working zone[C]//2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA). Nanchang, China:IEEE, 2015.
[17] 梁满朝,伍玉霞. 基于ANSYS Workbench退火机退火炉的结构优化[J]. 大众科技,2014(12):61-64.
[18] 周军勇,俞能君,金向阳,等. 基于ANSYS的真空热处理炉的温度场分析[J]. 热加工工艺,2024,53(8):31-37.
[19] 许涛. 真空电阻炉的温度场分布规律方法研究[J]. 科技视界,2019(6):86-87.
[20] 王昊杰,李勇,王昭东,等. 真空渗碳炉加热室温度场数值模拟与分析[J]. 热加工工艺,2016,45(24):172-176.
[21] 雷金辉,付彤,陈焰. 内热式多级连续真空炉稳态温度场研究[J]. 特种铸造及有色合金,2017,37(7):715-718.
[22] 梁佰强,王海龙. 基于ANSYS高真空钎焊炉温度场数值模拟研究[J]. 热加工工艺,2020,49(21):139-142.
[23] 王明伟,张立文,江国栋,等. 真空热处理炉温度场的有限元数值模拟[J]. 机械科学与技术,2005,24(6):748-750.
[24] 王同,陆文林,李勍,等. 热氢处理炉真空加热温度场数值模拟与分析[J]. 金属热处理,2021,46(2):209-212.
[25] 乔达,卞祥德,付经伦,等. 大型航空构件专用热氢处理炉流-热-固耦合仿真分析[J]. 金属热处理,2021,46(1):214-219.
[26] 李强,王璐. 基于ANSYS的气氛烧结炉动态温度场研究[J]. 信息技术与网络安全,2018,37(7):102-106.
[27] 王硕彬,丛培武,陆文林,等. 真空炉隔热屏保温效果的数值仿真[J]. 金属热处理,2022,47(6):249-252.
[1] TANG Rong, GUAN Jie, LU Shaobo, LI Runxia, HAN Yongchao. Development and Temperature Uniformity Measurement of Large Metal Sealed Vacuum Furnace [J]. VACUUM, 2025, 62(3): 84-88.
[2] HUANG Zhi-qiang, WANG Zhen-hong, LI Xin-ke, GAO Yuan, SU Ning, CHEN Ding, CHE En-lin, DAI Yu-bo, MO Fan. Research Status of MHD Sealing Technology in Vacuum Heat Treatment Equipment Based on Superconducting Coils [J]. VACUUM, 2024, 61(6): 79-84.
[3] QI Song-song, NI Jun, LI Zhuo-hui, SHI Cheng-tian, FENG Lei, CHEN Hong-bin, LI Can-lun. Research on Gate Design and Optimization of Super Large Vacuum Vessel [J]. VACUUM, 2023, 60(5): 81-85.
[4] LU Shao-bo, HAN Yong-chao, SONG Yan-peng, ZHANG Ji-feng. Design of Deep Well Vacuum Brazing Equipment for Nuclear Power Components Manufacturing [J]. VACUUM, 2023, 60(3): 72-75.
[5] MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo. Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace [J]. VACUUM, 2021, 58(5): 104-109.
[6] XIE Yong-qiang, JIN Li-yan, YANG Xiao-dong, WANG Cheng-jun, XIA Dan, SU Chun. Finite Elements Analysis and Optimal Design for the Temperature Field of Vacuum Brazing Furnace [J]. VACUUM, 2021, 58(4): 58-62.
[7] QI Song-song, XU Xiao-hui, LIU Jia-lin, ZHANG Rui, LI Can-lun, DONG De-sheng, SHI Cheng-tian. Design and Analysis of Temperature Control Heat Sink for Thermal Vacuum Test Equipment [J]. VACUUM, 2020, 57(2): 62-65.
[8] RUAN Qing-dong, PU Shi-hao, CHEN Chang, WEI Yu-ping. Development of acceleration power supply for a new type high energy ion implantation system [J]. VACUUM, 2018, 55(6): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!