欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 1-6.doi: 10.13385/j.cnki.vacuum.2025.04.01

• Measurement and Control •     Next Articles

Development and Testing of Air Tightness Test System for Divertor of EAST

WEI Jun1,2,3, HAN Jiang1, ZUO Guizhong2, WU Jiefeng2,3, HU Yufeng3, SHANG Mingming3   

  1. 1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, China;
    3. Hefei Juneng Electro Physics High-Tech Development Co., Ltd., Hefei 230031, China
  • Received:2024-09-02 Online:2025-07-25 Published:2025-07-24

Abstract: The high parameter operation of the magnetic confinement fusion device requires a good vacuum environment, and the divertor is the core component of the Tokamak device. The divertors have two operating conditions of high temperature nitrogen baking and water cooling, and there is a great risk of leakage, so the leak detection of the divertor component is very important. In this paper, a set of baking leak detection system is set up to meet the air tightness testing requirements of the lower EAST divertor, which can simulate the high temperature and normal temperature environment of the divertor during operation, and test the air tightness of the internal flow channel of the divertor. The as-built air tightness detection system can bake at a maximum temperature of 600 ℃, and the ultimate vacuum can reach 5×10-5 Pa, which can meet the air tightness detection requirements of the lower divertor of EAST under normal temperature and baking at 200 ℃. The measurement error caused by time accumulation of standard leakage is optimized by adding small vacuum chamber. Under normal and high temperature conditions, the minimum detectable leak rate of the system meets the requirements of the positive pressure baking gas tightness testing of the lower divertor, but the background reading of leak detector of the system at high temperature is 1 to 2 orders of magnitude higher than that at normal temperature. This is caused by the release of water vapor and hydrogen under high temperature condition, which can be solved by extending the baking and holding time.

Key words: air tightness testing, baking, divertor, Tokamak

CLC Number:  TB79

[1] 万宝年. 我国磁约束核聚变研究进展和展望[J]. 中国科学基金,2008(1):1-7.
[2] 朱士尧. 核聚变原理[M]. 合肥:中国科学技术大学出版社,1992.
[3] 石秉仁. 磁约束聚变原理与实践[M]. 北京:原子能出版社,1998.
[4] XI Y, HE G Y, ZAN X, et al.Characterization of the crack and recrystallization of W/Cu monoblocks of the upper divertor in EAST[J]. Applied Sciences,2023,13(2):745.
[5] YAO G, SHEN X, LIU Q J, et al.Study on damage behavior of the outer horizontal target in the EAST lower divertor after plasma operations[J].Nuclear Materials and Energy,2024,39:101640.
[6] GUO Z X, ZHU D H, YAN R, et al.Long-term plasma exposure of ITER-like W/Cu monoblocks with pre-damaged surfaces in EAST experiments[J]. Nuclear Fusion, 2024,64(7): 076026.
[7] 李加宏, 胡建生, 王小明, 等. EAST超导托卡马克装置真空室壁处理的研究[J]. 物理学报,2012,61(20):310-316.
[8] 左桂忠, 元京升, 庄会东, 等. 面向EAST装置长脉冲高参数等离子体运行的真空系统性能提升[J]. 真空与低温, 2024,30(3):229-237.
[9] LUO G N, LIU G H, LI Q, et al.Overview of decade-long development of plasma-facing components at ASIPP[J]. Nuclear Fusion, 2017, 57(6): 065001.
[10] 訾鹏飞. EAST下偏滤器结构优化设计与关键技术研究[D].合肥:中国科学技术大学,2019.
[11] 毕海林, 付堃如, 程春鹏, 等. 聚变装置真空系统远程泄漏检测方法研究[J].真空与低温,2024,30(3):262-267.
[12] ITER. ITER vacuum handbook[Z]. Saint-Paul-lez-Durance, France, 2009.
[13] 国家国防科技工业局. 氦质谱检漏方法: QJ 3089A-2018[S]. 北京:国家国防科技工业局, 2018.
[14] 全国真空技术标准化技术委员会. 真空技术四极质谱检漏方法:GB/T 35049-2018[S]. 北京:中国标准出版社, 2018.
[15] 全国锅炉压力容器标准化技术委员会. 承压设备无损检测第8部分:泄漏检测: NB/T 47013.8-2012[S]. 北京:新华出版社,2012.
[16] 刘义樑, 蔡泽波, 方仁俊, 等. ITER屏蔽包层模块热态真空室高温氦检漏[C]//2018远东无损检测新技术论坛论文集. 2018: 568-577.
[17] 李卫平, 江国焱, 罗炜, 等.真空氦检漏技术在ITER项目中的应用[J]. 无损检测,2023,45(6):1-6.
[18] 吴孝俭, 闫荣鑫.泄漏检测[M]. 北京:机械工业出版社, 2005.
[19] 赵澜, 张涤新, 郭美如, 等.渗氦型真空漏孔漏率的温度修正[J]. 真空与低温,2007,13(2):90-93.
[20] 成永军, 李得天, 张涤新, 等.极高真空校准室内残余气体的成分分析[J]. 真空科学与技术学报,2010,30(1):54-59.
[21] 刘顺明, 关玉慧, 黄涛, 等. CSNS直线加速器真空系统及四极质谱检漏[J]. 真空与低温, 2019,25(5):348-354.
[1] LI Lin, MENG Xian-cai, YUAN Jing-sheng, BI Hai-lin, ZUO Gui-zhong, HU Jian-sheng. Characteristic Analysis of Deuterium Desorption in Liquid Lithium [J]. VACUUM, 2023, 60(2): 51-56.
[2] ZHOU Jun, CAO Zeng, CAO Cheng-zhi, HUANG Xiang-mei, GAO Xiao-yan, HU Yi. Mass Spectrometry Analysis for Wall Conditioning in HL-2A Tokamak [J]. VACUUM, 2023, 60(2): 45-50.
[3] ZHOU Jun, CAO Zeng, CAO Cheng-zhi, HUANG Xiang-mei, GAO Xiao-yan, HU Yi. Preliminary Results of Mass Spectrometry Measurements for HL-2M Tokamak [J]. VACUUM, 2022, 59(3): 68-73.
[4] DONG Dong, JING Jia-rong, DONG De-sheng, SHI Cheng-tian, REN Wei-song, SUN Ling, CHEN Ya-hui. Vacuum Baking Facility for Contaminant Cleaning for Spacecraft [J]. VACUUM, 2021, 58(1): 51-56.
[5] ZHAO Chang-lian, MAO Shi-feng, LIU Peng, QIN Shi-jun, YU Yi, YE Min-you. DSMC Simulation Study of Influence of Nozzle Angle on Pumping Performance of Mercury Diffusion Pump [J]. VACUUM, 2020, 57(2): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .