欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (6): 47-53.doi: 10.13385/j.cnki.vacuum.2025.06.07

• Vacuum Acquisition System • Previous Articles     Next Articles

Study on the Steam Penetration Mechanism in Tubular Structures Based on Vacuum Pulsation Cycle Parameter Regulation

LEI Li, ZHENG Wei, SUN Lihong, LI Youcong   

  1. The 964th Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Changchun 130062, China
  • Received:2025-03-03 Online:2025-11-25 Published:2025-11-27

Abstract: To address the challenges of low steam penetration efficiency and uneven distribution in microscale lumen structures, this study investigates the regulatory mechanism of vacuum pulsation parameters on steam mass transfer, aiming to improve penetration performance and energy utilization. A steam diffusion dynamics model coupling pulsation frequency (0.5~2.0 Hz) and pressure amplitude (5~15 kPa) was developed, and computational fluid dynamics (CFD) simulations were employed to reveal how pulsating pressure fields influence steam phase change and boundary layer disturbances. A dedicated vacuum pulsation experimental platform was constructed, integrating high-speed micro-imaging and X-ray micro-CT to quantitatively analyze steam penetration depth and 3D distribution under various parameter conditions. Response surface methodology was used to optimize the parameter combinations. The results show that under pulsation conditions, the penetration uniformity index improved by approximately 21%, and the terminal steam saturation reached 0.78±0.05, representing an approximately 50% increase compared to static conditions. At the optimal parameter combination of 1.2 Hz/10 kPa, the unit energy efficiency index (η=5.06 s/J) achieved its highest value, representing an approximate 40% improvement over the baseline, with the corresponding key performance indicator (KPI) reaching 2.37 g/(kW·s), a 58% improvement over the standard. The study confirms that vacuum pulsation parameters can synergistically enhance steam transfer efficiency and energy performance, significantly improving permeation in microscale structures, and providing theoretical guidance and optimization strategies for applications such as microchannel drying, instrument sterilization, and mass transfer in porous media.

Key words: vacuum pulsation, microscale lumen structure, steam penetration efficiency, cycle parameter regulation, CFD simulation

CLC Number:  R197.39

[1] 邹惠芬,王宏伟,刘超翔.带分支结构平板脉动热管的传热性能研究[J].沈阳建筑大学学报(自然科学版),2024,40(6):1054-1059.
[2] 王西龙,罗根松,朱赛赛,等.罗茨真空泵试验方法的研究[J].真空, 2011, 48(2):67-72.
[3] 姚晓霞,林坚,黄丽秀.脉动真空清洗消毒器在腔镜器械清洗中的应用效果[J].中国医疗器械信息,2023,29(1):163-165.
[4] 朱爱群,李云慧子,马秀妮.RCA在脉动真空清洗器清洗管腔类精密器械中的应用研究[J].中国医疗设备,2022,37(3):112-115.
[5] 李伯宁,谷鑫,王衍海,等.影响脉动真空压力蒸汽灭菌器灭菌质量的原因分析及对策[J].中国医学装备,2021,18(6):146-148.
[6] 黄丽平,黄贵玲,郑勤好,等.脉动真空清洗消毒机在管腔器械清洗中的价值探究[J].现代仪器与医疗,2023,29(5):5-9.
[7] 周超,王忠豪,史森中,等.脉动真空灭菌设备校准方法研究[J].中国医学装备,2023,20(4):159-163.
[8] LIU F, SUN Z, BIAN H, et al.Numerical investigation on transport characteristics of hydrogen-air-steam mixture induced by condensation in the single compartment[C]//International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022.
[9] 张家安,邓强,马增强,等.基于IMHSA-MSCNN-BiLSTM的风机轴承故障诊断[J].电子测量技术, 2024, 47(7):170-176.
[10] TISCHENDORF C, JANOTTE D, FIORENZANO R, et al.Investigation of energy dissipation in an ejector refrigeration cycle[C]//Proceedings 7th Modelica Conference. 2009.
[11] ALEKSEEV M V, VOZHAKOV I S, SOROKIN A L, et al.Simulation of the outflow of steam from a high-pressure volume into a closed external region[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1677(1): 012081.
[12] DINSENMEYER R, FOURMIGUÉ J F, CANEY N, et al.Volume of fluid approach of boiling flows in concentrated solar plants[J]. International Journal of Heat and Fluid Flow, 2017, 65: 177-191.
[13] 周泓,米宏霏,颜美琼.脉动真空清洗消毒器在腔镜器械再处理中的应用[J].护理学杂志,2020,35(14):86-87.
[14] NAFIKOV I, KHUSAINOV R, LUKMANOV R, et al.Justification of parameters of vacuum pumping means with pulsating active flow for cattle farms[J]. Engineering for Rural Development, 2021: 1416-1421.
[15] STOSIAK M, KARPENKO M, SKAČKAUSKAS P, et al. Identification of pressure pulsation spectrum in a hydraulic system with a vibrating proportional valve[J]. Journal of Vibration and Control, 2024, 30(21-22): 4917-4930.
[16] ABDEL-FATTAH Y, SALLAM L, DIEKMANN H.Box-behnken experimental design for optimization of biomass and rthanol yield in saccharomyces cerevisiae[J]. Future Perspectives of Medical, Pharmaceutical and Environmental Biotechnology, 2024, 1(3): 9-14.
[17] YUAN D, ZHOU W, FU T, et al.Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels[J]. International Journal of Thermal Sciences, 2020, 152: 106320.
[18] 李婉清,张广川,曾荟燕,等.基于二项Logistic回归的多种废弃物同载脉动真空灭菌模式研究[J].中国兽医杂志,2023,59(01):64-69.
[19] DU B, ZHANG X.Pulsating vacuum sterilizer[J]. Advanced Materials Research, 2013, 616: 2009-2012.
[20] 吴淑贞,牛畅,冯春月,等.管腔类手术器械采用低温过氧化氢等离子和脉动真空压力蒸汽灭菌的合格率分析[J].黑龙江中医药,2022,51(2):96-98.
[21] 郭诗莹,郑凯龙.低温过氧化氢等离子和脉动真空压力蒸汽灭菌在管腔类手术器械管理中的应用[J].中国医疗器械信息,2024,30(13):164-166.
[22] XU P, ZHU J, XU L, et al.Bionic tree-like microchannel with steady and pulsating flow for thermal management of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2024, 93: 328-337.
[23] WANG X, SUN C, JIA S, et al.Flow pattern maps of double emulsions transporting through bifurcation microchannels[J]. Soft Matter, 2024, 20(33): 6544-6557.
[24] 李小金,李正清,韩仙虎,等.基于TRIZ理论的一种提升罗茨真空泵基础压力的设计方法[J].真空, 2024, 61(2):62-67.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .