欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (2): 66-70.doi: 10.13385/j.cnki.vacuum.2020.02.13

• Vacuum Technology Application • Previous Articles     Next Articles

Effect of Cold Trap Temperature on Vacuum Cooling of Cooked Meat Products

DONG Yan-hong, ZOU Tong-hua, ZHANG Kun-sheng, WANG Wei, HUI Qing-ling   

  1. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tanjin 300134, China
  • Received:2019-10-18 Online:2020-03-25 Published:2020-04-24

Abstract: Vacuum cooling technology has the advantages of fast cooling speed and low energy consumption, which has been used and developed rapidly in the food cold chain. In this paper, by changing the temperature of the cold trap and conducting the vacuum cooling experiment of cooked meat products, the effects of different cold trap temperatures on the cooling rate, mass change and vacuum chamber pressure were analyzed. The results show that different cold trap temperatures have different effects on the cooling rate, the quality changes before and after cooling, and the pressure in the vacuum chamber during the cooling process. In addition, it is not the lower the temperature of the cold trap, the better the cooling effect. The vacuum cooling process with the temperature of the cold trap at -15℃, -25℃, and -35℃ was compared. The optimum temperature value was -25℃, and minimum cooling time was 320s.

Key words: vacuum cooling, cold trap temperatures, cooling rate, mass change

CLC Number: 

  • TS205
[1] 钞贺森, 田旭, 于晓华. 肉类消费结构、饲料安全和粮食安全——农业“供给侧改革”的一个参照系[J]. 农业现代化研究, 2017, 38(5): 737-745.
[2] 杨茜. 中国肉制品行业研究及投资前景分析——以双汇发展为例[J]. 现代商业, 2014(35): 19-20.
[3] Erik Mathijs.Exploring future patterns of meat consumption[J]. Meat Science, 2015, 5(16): 112-116.
[4] ZHU Z W, GENG Y, SUN D W.Effects of operation processes and conditions on enhancing performances of vacuum cooling of foods: a review[J]. Trends in Food Science & Technology, 2019, 85: 67-77.
[5] 梁德仁. 基于食品安全背景的上海山林食品有限公司发展战略研究[D]. 南京: 东南大学, 2017.
[6] 杨桂馥. 冷却和冷冻食品按贮藏温度分类及其特点——冷藏的新温度带[J]. 食品与发酵工业, 1987(6): 79-82+22.
[7] 魏里朋, 何承云, 康壮丽, 等. 温度波动对冷却猪肉品质的影响[J]. 食品工业科技, 2019, 6(3): 1-12.
[8] Santos García, Heredia N.Clostridium perfringens: a dynamic foodborne pathogen[J]. Food and Bioprocess Technology, 2011, 4(4): 624-630.
[9] USDA. Performance standards for the production of certain meat and poultry products[S]. Washington DC: Office of Federal Register National Archives and Records Administration, 1999.
[10] 呼红梅, 王彦平, 张印, 等. 不同贮藏温度对热缩真空包装冷却猪肉微生物菌相变化和肉品质的影响[J]. 畜牧与兽医, 2015, 47(12): 40-44.
[11] 陈康, 王国泽. 低温肉制品中特定腐败微生物的危害及控制[J]. 食品安全导刊, 2017(30): 134-135.
[12] James S J.The cooling of cooked meat products. In proceedings of future meat[M]. Manufacturing Processes London, U. K. Institute of Mechanical Engineering, 1990: 1-9.
[13] Jackman P, Sun D W, Zheng L.Effect of combined vacuum cooling and air blast cooling on processing time and cooling loss of large cooked beef joints[J]. Journal of Food Engineering, 2007, 81(1): 266-271.
[14] Feng, C H, Drummond L, Zhang Z H, et al. Effects of processing parameters on immersion vacuum cooling time and physico-chemical properties of pork hams[J]. Meat Science, 2013, 95(2): 425-432.
[15] Feng C H, Sun D W, García M, et al.Effects of different cooling methods on shelf-life of cooked jumbo plain sausages[J]. Food Science and Technology, 2013, 54: 426-433.
[16] 史伟勤, 张金妹, 楼唯, 等. 冻干机捕水器结构的改进[J]. 干燥技术与设备, 2014, 12(1): 21-24.
[17] 潘嘉信, 刘恩海. 茼蒿真空预冷过程捕水器捕水特性理论分析及预冷工艺试验研究[J]. 食品科技, 2017, 42(2): 99-104.
[18] 王鉴, 韩厚德, 阚安康, 等. VAC-0. 2型真空预冷装置中的捕水器运行性能及其影响因素分析[J]. 能源技术, 2010, 31(2): 77-80+84.
[19] 靳敏, 夏玉宇. 食品技术检验[M]. 北京: 化学工业出版社, 2003.
[20] 刘佳, 乔丽萍, 李喜宏, 等. 温度波动对樱桃番茄贮藏效果研究[J]. 食品研究与开发, 2017, 38(11): 198-202.
[21] 李金娜, 方海田, 刘慧燕, 等. 不同贮藏温度对采后碧娇樱桃番茄生理和品质的影响[J]. 食品工业, 2019, 40(3): 111-115.
[22] 刘洋. 真空冷却中降压速率对失水量和冷阱捕水效率的影响[C]. 中国制冷学会、国内贸易工程设计研究院. 第九届全国食品冷藏链大会暨第六届全国冷冻冷藏产业创新发展年会论文集. 中国制冷学会、国内贸易工程设计研究院: 广东省科学技术协会科技交流部, 2014: 275-279.
[23] 李金伟, 尹义金, 王超, 等. 真空预冷设备中捕水器的理论模拟和结构优化[J]. 青岛大学学报(工程技术版), 2018, 33(2): 100-103.
[24] 魏东旭, 邹同华, 汪伟, 等. 真空冷却在肉类食品工业的研究现状[J]. 冷藏技术, 2016(4): 12-16.
[1] SUN Qi-da. Vacuum cooling for food [J]. VACUUM, 2019, 56(3): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .