欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 68-72.doi: 10.13385/j.cnki.vacuum.2023.02.12

• Measurement and Control • Previous Articles     Next Articles

Modular Design and Application of Cooling Device for Vacuum Electron Beam Melting Furnace

CHENG Cheng, JIA Zi-zhao, LÜ Xu-ming, YAN Chao, GUO Zhi-wei   

  1. Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China
  • Received:2022-07-28 Online:2023-03-25 Published:2023-03-27

Abstract: In view of the process safety and engineering application of electron beam melting furnace, a set of cooling device needs to be designed to meet the requirements of 30kW high heat exchange, functional module separation and high safety protection. Based on the theoretical calculation of water cooling module of the cooling device, the fault mode analysis and logical judgment of the control module and protection module are carried out, and a modular cooling device is proposed. The results show that the cooling device has stable and reliable operation,good cooling effect and high safety, which can ensure the stable operation of electron beam melting furnace.

Key words: cooling device, safety, modularization, protection logic

CLC Number: 

  • TF134
[1] ZHAO Y F, KOIZUMI Y, AOYAGI K, et al.Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam[J]. Powder Technology, 2020, 381: 44-54.
[2] AMEEN W, AL-AHMARI A, AHMED N, et al.Investigation the effect of electron beam melting parameters on overhang structure deformation[J]. Materials Technology, 2022, 37(10): 1586-1593.
[3] SUN J L, ZHANG J, WANG H W, et al.Purification of metallurgical grade silicon in an electron beam melting furnace[J]. Surface and Coatings Technology, 2013, 228: 67-71.
[4] 谭毅, 石爽. 电子束技术在冶金精炼邻域中的研究现状和发展趋势[J]. 材料工程, 2013(8): 92-100.
[5] ZHANG T, SHANG Z, CHEN M, et al.High-purity nickel prepared by electron beam melting: purification mechanism[J]. Metallurgical and Materials Transactions B, 2014, 45(1): 164-174.
[6] VUTOVA K, STEFANOVA V, VASSILEVA V, et al.Behaviour of impurities during electron beam melting of copper technogenic material[J]. Materials, 2022(15): 956-936.
[7] KÖRNER C. Additive manufacturing of metallic components by selective electron beam melting-a review[J]. International Materials Reviews, 2016, 61(5): 361-377.
[8] 尚再艳, 张涛, 陈明, 等. 镍的电子束熔炼提纯研究[J]. 稀有金属, 2013, 37(1): 116-122.
[9] 冯寅楠, 闫鹏, 贾国斌. 电子束冷床熔炼的应用现状[J]. 中国材料进展, 2020, 39(4): 295-303.
[10] 贾国斌, 尹中荣. 电子束技术在难熔金属行业的应用[J]. 稀有金属材料与工程, 2012(增刊2): 113-117.
[11] 尹中荣, 马元, 郑杰, 等. 新型电子束熔炼炉的研制[J]. 真空, 2003(6): 44-48.
[12] 吴健, 宋虎, 曾钢. 金属铀电子束熔炼实验及数值模拟研究[J]. 矿冶工程, 2020, 40(1): 134-137.
[13] 刘欢, 张帆, 罗立平. 电子束熔炼用水冷铜坩埚水道数值模拟[C]//中国核科学技术进展报告(第五卷). 中国核学会2017年学术年会论文集第4册. 2017(5): 254-261.
[14] 王东, 苍大强, 张玲玲. 真空电子束炉中移动热源的熔池流场及温度场研究[J]. 冶金能源, 2017, 36(1): 19-23.
[15] HAAG J, MARTENS J, DUSSOUBS B, et al.Analysis of the thermal transfers in a VASM crucible: electron beam melting experiment and numerical simulation[J]. Metals, 2020(9): 1152.
[16] 梁培鑫, 柴凤, 李翠萍, 等. 水冷电机水路设计的研究[J]. 微电机, 2013, 46(5): 1-4.
[17] 陈建业, 沈英魁, 陈希正. 大功率变流器纯水冷却系统的研制与应用[J]. 电力系统自动化, 2000(23): 39-42.
[18] 丁东旭, 袁广超, 郭建, 等. 循环式液体冷却系统的设计原理、元器件选型与模拟试验[J]. 流体机械, 2012, 40(6): 75-77.
[19] 关醒凡. 泵的理论与设计[M]. 北京: 机械工业出版社, 1987.
[20] 史美中, 王中铮. 热交换器原理与设计[M]. 南京: 东南大学出版社, 1989.
[21] 冷明全, 吴建超, 王靖. 高压大功率变频器纯水冷却装置及其控制系统[J]. 变频器世界, 2011(10): 90-92.
[22] 吴筱骏, 姜周曙, 王剑. 纯水冷却装置及其控制系统的设计与应用[J]. 科技通报, 2010, 26(2): 253-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .