欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (5): 60-65.doi: 10.13385/j.cnki.vacuum.2023.05.09

• Thin Film • Previous Articles     Next Articles

Peeling Behaviors of Graphene Film by Molecular Dynamics Simulations

FANG Jiu-kang, DONG Shu-hong   

  1. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
  • Received:2022-12-30 Online:2023-09-25 Published:2023-09-26

Abstract: In this paper, effects of substrate surface roughness, peeling angle and temperatureon the peeling property of graphene films are studied in details by molecular dynamics(MD) simulations. In addition, a theoretical model characterizing the peeling force and the peeling angle ispresented. The results show that the peeling force increases with the increasing surface roughness of the substrate and temperature. Meanwhile, the effect of temperature on the preparation of graphene films by metal assisted stripping is also highlighted, graphene with different layers can be peeled out by adjusting the temperature reasonably. The peeling force gradually decreases when the peeling angle changes from 0° to 90°, which is in consistent with the theoretical prediction. The results can provide a reference for exploring the peeling performance of graphene film from a rough substrate.

Key words: molecular dynamics simulation, rough substrate, graphene membrane, peeling behavior

CLC Number:  TH145;O561

[1] LAU C N, BAO W, VELASCO J.Properties of suspended graphene membranes[J]. Materials Today, 2012, 15(6): 238-245.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[3] LEE C, WEI X, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[4] GEIM A K, NOVOSELOV K S.The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[5] GEIM A K.Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[6] PRASAI D, TUBERQUIA J C, HARL R R, et al.Graphene: corrosion-inhibiting coating[J]. ACS Nano, 2012, 6(2): 1102-1108.
[7] 杨威, 魏贤龙. 片上电子源的研究现状(二)[J]. 真空, 2020, 57(1): 1-10.
[8] EDA G, FANCHINI G, CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.
[9] 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展[J]. 真空, 2021, 58(5): 11-25.
[10] 关磊. 一维碳纳米材料的研究进展[J]. 真空, 2013, 50(6): 72-76.
[11] 张哲, 李建昌. 微阵列结构柔性压力传感器研究进展[J/OL]. 真空, 2022: 1-30. http://kns.cnki.net/kns8/
defaultresult/index.
[12] STANKOVICH S, DIKIN D A, DOMMETT G H, et al.Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[13] 刘艳梅, 苗玉华, 潘新, 等. 激光熔覆镍包石墨和石墨烯复合涂层组织和性能分析[J]. 真空, 2020, 57(4): 85-88.
[14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[15] DESAI S B, MADHVAPATHY S R, AMANI M, et al.Gold-mediated exfoliation of ultralarge optoelectronically-
perfect monolayers[J]. Advanced Materials, 2016, 28(21): 4053-4058.
[16] CHEN H, CHEN S H.The peeling behaviour of a graphene sheet on a nano-scale corrugated surface[J]. Journal of Physics D: Applied Physics, 2013, 46(43): 435305.
[17] 白清顺, 沈荣琦, 何欣, 等. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究[J]. 物理学报, 2018, 67(3): 22-30.
[18] PENG Z, YIN H, YAO Y, et al.Effect of thin-film length on the peeling behavior of film-substrate interfaces[J]. Physical Review E, 2019, 100(3): 032804.
[19] GAO E, LIN S Z, QIN Z, et al.Mechanical exfoliation of two-dimensional materials[J]. Journal of the Mechanics and Physics of Solids, 2018, 115: 248-262.
[20] CAO G, GAO H.Mechanical properties characterization of two-dimensional materials via nanoindentation experiments[J]. Progress in Materials Science, 2019, 103: 558-595.
[21] PENG Z, WANG C, CHEN L, et al.Peeling behavior of a viscoelastic thin-film on a rigid substrate[J]. International Journal of Solids and Structures, 2014, 51(25/26): 4596-4603.
[22] STUART S J, TUTEIN A B, HARRISON J A.A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics, 2000, 112(14): 6472-6486.
[23] FOILES S M, BASKES M I, DAW M S.Embedded- atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(12): 7983-7991.
[24] VERLET L.Computer “experiments” on classical fluids.I.Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103.
[25] HUANG SP, MAINARDI D S, BALBUENA P B.Structure and dynamics of graphite-supported bimetallic nanoclusters[J]. Surface Science, 2003, 545(3): 163-179.
[26] LI Y, XIONG Y, ZHOU Z, et al.The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling[J]. Journal of Applied Physics, 2017, 121(5): 054303
[27] 潘俊超. 纳米尺度下受限水的粘附、剪切及输运[D]. 无锡: 江南大学, 2020.
[1] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!