VACUUM ›› 2023, Vol. 60 ›› Issue (5): 60-65.doi: 10.13385/j.cnki.vacuum.2023.05.09
• Thin Film • Previous Articles Next Articles
FANG Jiu-kang, DONG Shu-hong
CLC Number: TH145;O561
[1] LAU C N, BAO W, VELASCO J.Properties of suspended graphene membranes[J]. Materials Today, 2012, 15(6): 238-245. [2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. [3] LEE C, WEI X, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. [4] GEIM A K, NOVOSELOV K S.The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. [5] GEIM A K.Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. [6] PRASAI D, TUBERQUIA J C, HARL R R, et al.Graphene: corrosion-inhibiting coating[J]. ACS Nano, 2012, 6(2): 1102-1108. [7] 杨威, 魏贤龙. 片上电子源的研究现状(二)[J]. 真空, 2020, 57(1): 1-10. [8] EDA G, FANCHINI G, CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274. [9] 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展[J]. 真空, 2021, 58(5): 11-25. [10] 关磊. 一维碳纳米材料的研究进展[J]. 真空, 2013, 50(6): 72-76. [11] 张哲, 李建昌. 微阵列结构柔性压力传感器研究进展[J/OL]. 真空, 2022: 1-30. http://kns.cnki.net/kns8/ defaultresult/index. [12] STANKOVICH S, DIKIN D A, DOMMETT G H, et al.Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286. [13] 刘艳梅, 苗玉华, 潘新, 等. 激光熔覆镍包石墨和石墨烯复合涂层组织和性能分析[J]. 真空, 2020, 57(4): 85-88. [14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [15] DESAI S B, MADHVAPATHY S R, AMANI M, et al.Gold-mediated exfoliation of ultralarge optoelectronically- perfect monolayers[J]. Advanced Materials, 2016, 28(21): 4053-4058. [16] CHEN H, CHEN S H.The peeling behaviour of a graphene sheet on a nano-scale corrugated surface[J]. Journal of Physics D: Applied Physics, 2013, 46(43): 435305. [17] 白清顺, 沈荣琦, 何欣, 等. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究[J]. 物理学报, 2018, 67(3): 22-30. [18] PENG Z, YIN H, YAO Y, et al.Effect of thin-film length on the peeling behavior of film-substrate interfaces[J]. Physical Review E, 2019, 100(3): 032804. [19] GAO E, LIN S Z, QIN Z, et al.Mechanical exfoliation of two-dimensional materials[J]. Journal of the Mechanics and Physics of Solids, 2018, 115: 248-262. [20] CAO G, GAO H.Mechanical properties characterization of two-dimensional materials via nanoindentation experiments[J]. Progress in Materials Science, 2019, 103: 558-595. [21] PENG Z, WANG C, CHEN L, et al.Peeling behavior of a viscoelastic thin-film on a rigid substrate[J]. International Journal of Solids and Structures, 2014, 51(25/26): 4596-4603. [22] STUART S J, TUTEIN A B, HARRISON J A.A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics, 2000, 112(14): 6472-6486. [23] FOILES S M, BASKES M I, DAW M S.Embedded- atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(12): 7983-7991. [24] VERLET L.Computer “experiments” on classical fluids.I.Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103. [25] HUANG SP, MAINARDI D S, BALBUENA P B.Structure and dynamics of graphite-supported bimetallic nanoclusters[J]. Surface Science, 2003, 545(3): 163-179. [26] LI Y, XIONG Y, ZHOU Z, et al.The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling[J]. Journal of Applied Physics, 2017, 121(5): 054303 [27] 潘俊超. 纳米尺度下受限水的粘附、剪切及输运[D]. 无锡: 江南大学, 2020. |
[1] | ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14. |
|