VACUUM ›› 2023, Vol. 60 ›› Issue (6): 53-60.doi: 10.13385/j.cnki.vacuum.2023.06.09
• Vacuum Metallurgy and Thermal Engineering • Previous Articles Next Articles
XU Hai-long1,2, FU Bao-quan3
CLC Number: TH142.3
[1] 周廉,赵永庆,王向东,等. 中国钛合金材料及应用发展战略研究[M].北京:化学工业出版社,2012:43-44. [2] 常辉,董月成,淡振华,等. 我国海洋工程用钛合金现状和发展趋势[J].中国材料进展, 2020, 39(7/8):585-588. [3] ZHAO H, XIE L F, XIN C, et al.Effect of molybdenum content on corrosion resistance and corrosion behavior of Ti-Mo titanium alloy[J]. Materials Today Communications, 2023,34:105032. [4] 艾梦婷,蒋洪川,孙宁恺,等. 中子发生器用 TiMo 合金薄膜氚靶制备及储氢性能研究[J].电子元件与材料,2020,39(7):85-89. [5] 辛湘杰,薛峻峰,董敏. 钛的腐蚀、防护及工程应用[M].合肥:安徽科学技术出版社,1988:476-478. [6] 徐增华. 金属耐蚀材料钛合金[J].腐蚀与防护, 2002, 23(1): 42-45. [7] 李青. 耐蚀性钛合金[J].材料开发与应用, 1996, 11(3):45-47. [8] 吴淑宁. 生物医用Ti-12Mo-3Nb合金变形行为的研究[D]. 哈尔滨: 哈尔滨工业大学,2020. [9] 蒲娇,黄青,张薇,等. 生物医用Ti 合金处理工艺、力学性能及耐腐蚀性能研究进展[J]. 热加工工艺,2022,53(4):5-9. [10] 袁弋翔. 生物医用多孔Ti-15Mo-xCu合金制备及性能研究[D]. 昆明: 昆明理工大学,2022. [11] 张海羲,刘元才,李欣,等. 冷轧Ti-15Mo合金的再结晶行为及动力学分析[J].青岛理工大学学报, 2023, 44(3):87-89. [12] NIINOMI M, NAKAI M, HIEDA J.Development of new metallicalloys for biomedical applications[J]. Acta Biomaterialia, 2012,8(11):3888-3903. [13] LI Y H, YANG C, ZHAO H D, et al.New developments of Ti-based alloys for biomedical applications[J]. Materials, 2014,7(3) :1709-1800. [14] HO W F, JU C P, LIN J H C. Structure and properties of cast binary Ti-Mo alloys[J]. Biomaterials, 1999,20(22): 2115-2122. [15] BOLAT G, IZQUIERDO J, GLORIANT T, et al.Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions[J]. Corrosion Science, 2015, 98:170-179. [16] 茹志芳, 李岩, 罗坤, 等. 低弹性模量钛合金的研究进展[J]. 材料导报, 2011 (25):250-254. [17] YUAN Y X, LUO R D, REN J K, et al.Design of a new Ti-Mo-Cu alloy with excellent mechanical and antibacterial properties as implant materials[J]. Materials Letters, 2022,306: 130875. [18] GUO Z J, HUANG Y Z, SUN C C, et al.Ti-Mo-Zr alloys for bone repair: mechanical properties, corrosion resistance, and biological performance[J]. Journal of Materials Research and Technology, 2023,24: 7624-7637. [19] LUO R D, YUAN Y X, REN J K, et al.Novel function- structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application[J]. Journal of Alloys and Compounds, 2023,945:169323. [20] C 莱茵斯, M 皮特尔斯. 钛与钛合金[M].陈振华,译. 北京:化学工业出版社,2005. [21] 雷文光,赵永庆,韩栋,等. 钛及钛合金熔炼技术发展现状[J]. 材料导报,2016,30(5):101-106. [22] 王资璐,郝孟一,李臻熙,等. 钛合金真空自耗熔炼中的风险识别及预防措施[J]. 真空,2021,58(3) :71-76. [23] 杨蓉. 电子束冷床炉熔炼钛钼镍铸锭生产工艺研究[D]. 西安:西安建筑科技大学,2019. [24] 张永刚. 骨科植入用各向同性钛合金板材工艺技术研究[D]. 西安:西安建筑科技大学,2021. [25] 常燕. 钛合金真空自耗熔炼过程中电场的数值模拟[J].工业加热,2019,48(5):21-23. [26] 杨欢,杨晓康,杜晨,等. 钛及钛合金真空熔炼技术研究进展[J]. 世界有色金属,2019(8):1-4. [27] 刘欣欣. 真空自耗电弧熔炼制备钛合金技术的研究进展[J]. 工业加热,2019,48(3): 67-69. [28] JING Z Q, SUN Y H, LIU R, et al.Effect of vacuum arc remelting process parameters on macrosegregation in TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(3): 815-822. [29] JING Z Q, SUN Y H, CHEN L, et al.Numerical simulation of current, magnetic field and electromagnetic force in vacuum arc remelting of titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(6): 1994-2001. [30] 李海松, 李宏伟, 寇宏超,等. 真空自耗电弧熔炼γ-TiAl合金铸锭凝固组织模拟[J]. 特种铸造及有色合金, 2012, 31(10): 901-904. [31] 王亚栋,张立峰,张健,等. 真空自耗熔炼过程宏观偏析的数值模拟[J].钢铁研究学报,2021,33(8):718-725. [32] 段军伟. 冷床炉熔炼钛及钛合金技术及其应用[J]. 有色金属加工, 2011,40(1): 53-53. [33] 马力蒲, 刘为超. 电子束熔炼技术及其应用[J]. 有色金属加工, 2008, 37(6): 28-32. [34] 罗雷,于兰兰,雷文光,等. 电子束冷床熔炼 TC4合金元素挥发机制研究[J]. 稀有金属材料与工程,2011, 40(4): 625-629. |
[1] | LI Can-min, ZHANG Xin-feng, WEI Rong-hua. The Anti-erosion (corrosion) Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2023, 60(5): 37-41. |
[2] | XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6. |
|