欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 53-60.doi: 10.13385/j.cnki.vacuum.2023.06.09

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Research on Vacuum Preparation and Corrosion Resistance of Titanium Alloys with High Mo Content

XU Hai-long1,2, FU Bao-quan3   

  1. 1. State Key Laboratory for Mechanical Behavior of Materials, Xi′an Jiaotong University, xi′an 710049, China;
    2. Northwest Institute for Nonferrous Metal Research, Xi′an 710016, China;
    3. Western Superconducting Technologies Co., Ltd., Xi′an 710016, China
  • Received:2023-07-07 Online:2023-11-25 Published:2023-11-27

Abstract: In view of the problems that Mo segregation, Mo inclusion and alloy composition are difficult to control when preparing Ti-Mo alloy in vacuum, vacuum arc consumable melting technology is adopted to control the electrode preparation, arc discharge parameters and melting times. The industrial grade ingot of high Mo content titanium alloy Ti32Mo was prepared. The gas element O content is not higher than 0.05%, H content is not higher than 0.001%, N content is not higher than 0.008%, and the deviation of Mo is less than 0.9%. The Ti32Mo alloy hardly corrodes in H2SO4 and HCl solution at room temperature. At 75℃, the maximum corrosion rate in HCl solution is less than 0.024mm/a, and that in H2SO4 is less than 0.067mm/a.

Key words: titanium alloy with high Mo content, Ti32Mo, vacuum preparation, corrosion resistance

CLC Number:  TH142.3

[1] 周廉,赵永庆,王向东,等. 中国钛合金材料及应用发展战略研究[M].北京:化学工业出版社,2012:43-44.
[2] 常辉,董月成,淡振华,等. 我国海洋工程用钛合金现状和发展趋势[J].中国材料进展, 2020, 39(7/8):585-588.
[3] ZHAO H, XIE L F, XIN C, et al.Effect of molybdenum content on corrosion resistance and corrosion behavior of Ti-Mo titanium alloy[J]. Materials Today Communications, 2023,34:105032.
[4] 艾梦婷,蒋洪川,孙宁恺,等. 中子发生器用 TiMo 合金薄膜氚靶制备及储氢性能研究[J].电子元件与材料,2020,39(7):85-89.
[5] 辛湘杰,薛峻峰,董敏. 钛的腐蚀、防护及工程应用[M].合肥:安徽科学技术出版社,1988:476-478.
[6] 徐增华. 金属耐蚀材料钛合金[J].腐蚀与防护, 2002, 23(1): 42-45.
[7] 李青. 耐蚀性钛合金[J].材料开发与应用, 1996, 11(3):45-47.
[8] 吴淑宁. 生物医用Ti-12Mo-3Nb合金变形行为的研究[D]. 哈尔滨: 哈尔滨工业大学,2020.
[9] 蒲娇,黄青,张薇,等. 生物医用Ti 合金处理工艺、力学性能及耐腐蚀性能研究进展[J]. 热加工工艺,2022,53(4):5-9.
[10] 袁弋翔. 生物医用多孔Ti-15Mo-xCu合金制备及性能研究[D]. 昆明: 昆明理工大学,2022.
[11] 张海羲,刘元才,李欣,等. 冷轧Ti-15Mo合金的再结晶行为及动力学分析[J].青岛理工大学学报, 2023, 44(3):87-89.
[12] NIINOMI M, NAKAI M, HIEDA J.Development of new metallicalloys for biomedical applications[J]. Acta Biomaterialia, 2012,8(11):3888-3903.
[13] LI Y H, YANG C, ZHAO H D, et al.New developments of Ti-based alloys for biomedical applications[J]. Materials, 2014,7(3) :1709-1800.
[14] HO W F, JU C P, LIN J H C. Structure and properties of cast binary Ti-Mo alloys[J]. Biomaterials, 1999,20(22): 2115-2122.
[15] BOLAT G, IZQUIERDO J, GLORIANT T, et al.Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions[J]. Corrosion Science, 2015, 98:170-179.
[16] 茹志芳, 李岩, 罗坤, 等. 低弹性模量钛合金的研究进展[J]. 材料导报, 2011 (25):250-254.
[17] YUAN Y X, LUO R D, REN J K, et al.Design of a new Ti-Mo-Cu alloy with excellent mechanical and antibacterial properties as implant materials[J]. Materials Letters, 2022,306: 130875.
[18] GUO Z J, HUANG Y Z, SUN C C, et al.Ti-Mo-Zr alloys for bone repair: mechanical properties, corrosion resistance, and biological performance[J]. Journal of Materials Research and Technology, 2023,24: 7624-7637.
[19] LUO R D, YUAN Y X, REN J K, et al.Novel function- structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application[J]. Journal of Alloys and Compounds, 2023,945:169323.
[20] C 莱茵斯, M 皮特尔斯. 钛与钛合金[M].陈振华,译. 北京:化学工业出版社,2005.
[21] 雷文光,赵永庆,韩栋,等. 钛及钛合金熔炼技术发展现状[J]. 材料导报,2016,30(5):101-106.
[22] 王资璐,郝孟一,李臻熙,等. 钛合金真空自耗熔炼中的风险识别及预防措施[J]. 真空,2021,58(3) :71-76.
[23] 杨蓉. 电子束冷床炉熔炼钛钼镍铸锭生产工艺研究[D]. 西安:西安建筑科技大学,2019.
[24] 张永刚. 骨科植入用各向同性钛合金板材工艺技术研究[D]. 西安:西安建筑科技大学,2021.
[25] 常燕. 钛合金真空自耗熔炼过程中电场的数值模拟[J].工业加热,2019,48(5):21-23.
[26] 杨欢,杨晓康,杜晨,等. 钛及钛合金真空熔炼技术研究进展[J]. 世界有色金属,2019(8):1-4.
[27] 刘欣欣. 真空自耗电弧熔炼制备钛合金技术的研究进展[J]. 工业加热,2019,48(3): 67-69.
[28] JING Z Q, SUN Y H, LIU R, et al.Effect of vacuum arc remelting process parameters on macrosegregation in TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(3): 815-822.
[29] JING Z Q, SUN Y H, CHEN L, et al.Numerical simulation of current, magnetic field and electromagnetic force in vacuum arc remelting of titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(6): 1994-2001.
[30] 李海松, 李宏伟, 寇宏超,等. 真空自耗电弧熔炼γ-TiAl合金铸锭凝固组织模拟[J]. 特种铸造及有色合金, 2012, 31(10): 901-904.
[31] 王亚栋,张立峰,张健,等. 真空自耗熔炼过程宏观偏析的数值模拟[J].钢铁研究学报,2021,33(8):718-725.
[32] 段军伟. 冷床炉熔炼钛及钛合金技术及其应用[J]. 有色金属加工, 2011,40(1): 53-53.
[33] 马力蒲, 刘为超. 电子束熔炼技术及其应用[J]. 有色金属加工, 2008, 37(6): 28-32.
[34] 罗雷,于兰兰,雷文光,等. 电子束冷床熔炼 TC4合金元素挥发机制研究[J]. 稀有金属材料与工程,2011, 40(4): 625-629.
[1] LI Can-min, ZHANG Xin-feng, WEI Rong-hua. The Anti-erosion (corrosion) Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2023, 60(5): 37-41.
[2] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .