欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (1): 21-26.doi: 10.13385/j.cnki.vacuum.2024.01.03

• Thin Film • Previous Articles     Next Articles

Preparation and Helium Permeation Properties of New Leak Elements Based on Subnanoporous Graphene Composite Membranes

LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, ZHANG Xiao, HAN Yan, LIU Chu-yan, SUN Li-chen, YAN Rong-xin   

  1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2023-04-28 Online:2024-01-25 Published:2024-01-24

Abstract: The standard leak element is the essential calibration device for the helium mass spectrometry leak detector. To improve the sensitivity of the helium mass spectrometry leak detector, the lower leak limit of the standard leak element should be reduced. In view of the problem that it is difficult to reduce the lower leak limit of the standard leak element made of traditional materials by improving the processing technology. A new type of standard leak element based on subnanoporous graphene composite membranes was prepared using CVD method, and the helium permeation performance and preparation process stability were studied. The results show that the leak rate per unit area of single-layer graphene/PMMA composite membranes is 4.17×10-12~1.09×10-11 Pa·m3/(cm2·s·Pa), and the leak element with a lower limit leak rate of 10-12 Pa·m3/s can be made by adjusting the penetration area of the composite membranes.

Key words: graphene, leak element, ultralow leak rate

CLC Number:  TB774

[1] 师立侠, 王凯, 汪力, 等. 面向探月工程应用的几种新型工质检漏技术[J]. 航天器环境工程, 2020, 27(3):310-314.
[2] CHU H M, SASAKI T, HANE K.Design, fabrication, and vacuum package process for high performance of 2D scanning MEMS micromirror[C]//16th International IEEE Solid-State Sensors Actuators and Microsystems Conference. Beijing, China: IEEE, 2011: 558-561.
[3] JAU Y Y, PARTNER H, SEHWINDT P D, et al.Low-power, miniature 171 Yb ion clock using an ultra-small vacuum package[J]. Applied Physics Letters, 2012, 101(25):253518.
[4] FISETTE B, CHEVALIER C, LEPINE A, et al. Design and fabrication of a scalable high-reliability vacuum sealed package for infrared detectors[C]//4th Electronic System-Integration Technology Conference. Amsterdam, Netherlands: IEEE, 2012: l-6.
[5] 肖力波, 陈旭, 黄天斌, 等. 超灵敏检漏的实时校准[J]. 真空科学与技术学报, 2006, 26(1): 54-56.
[6] 达道安. 真空设计手册[M]. 3版. 北京:国防工业出版社, 2004: 1318.
[7] CHAN C K, YEH S D, CHANG C C, et al.A flange-type standard leak element and its vacuum applications[J]. Vacuum, 2021, 184: 109945.
[8] CHAN C K, TU C Y, YEH S D, et al.A gasket-type standard leak element using femtosecond laser micromachining[J]. Vacuum, 2020, 180: 109650.
[9] ZHOU W T, BI H L, YU Z H, et al.Fabrication of the nanofluidic channels type leak assembly based on the glass frit sealing method[J]. Journal of Vacuum Science & Technology B, 2019, 37(5): 050603.
[10] IERARDI V, BECKER U, PANTAZIS S, et al.Nano-holes as standard leak elements[J]. Measurement, 2014, 58: 335-341.
[11] ZHU A Q, ZHAO Y H, WANG X D, et al.New leak assembly based on fluidic nanochannels[J]. Journal of Vacuum Science & Technology A, 2016, 34(5): 050604.
[12] ZHAO Y H, CHENG Y J, ZHANG Q, et al.New leak element using anodic aluminum oxide[J]. Vacuum, 2016, 131: 111-114.
[13] LEE C, WEI X D, KYSAR W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[14] CHEN Y, ZOU J, CAMPBELL S J, et al.Boron nitride nanotubes: pronounced resistance to oxidation[J]. Applied Physics Letters, 2004, 84(13): 2430-2432.
[15] BUNCH J S, VERBRIDGE S S, ALDEN J S, et al.Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[16] LEENAERTS O, PARTOENS B, PEETERS F M.Graphene: a perfect nanoballoon[J]. Applied Physics Letters, 2008, 93(19):193107.
[17] LI X S, CAI W W, AN J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J] Science, 2009, 324(5932): 1312-1314.
[18] LEE W C, BONDAZ L, HUANG S, et al.Centimeter-scale gas-sieving nanoporous single-layer graphene membrane[J] Journal of Membrane Science, 2021, 618: 118745.
[19] BOUTILIER M S, SUN C, O'HERN S, et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation[J]. ACS Nano, 2014, 8(1): 841-849.
[20] WANG L, DRAHUSHUK L W, CANTLEY L, et al.Molecular valves for controlling gas phase transport made from discrete angstrom-sized pores in graphene[J]. Nature Nanotechnology, 2015, 10(9): 785-790.
[21] ZHANG Y, ZHANG L Y, ZHOU C W.Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339.
[22] LOCK E H, BARAKET M, LASKOSKI M, et al.High-quality uniform dry transfer of graphene to polymers[J]. Nano letters, 2014, 12(1): 102-107.
[23] CANCADO L G, JORIO A, FERREIRA E, et al.Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011,11(8): 3190-3196.
[24] FERRARI A C, MEYER J C, SCARDACI V, et al.Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[1] HUANG Guang-hong, LI Di, LI Na, ZHEN Zhen, WANG Xin, XU Zhen-hua. Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process [J]. VACUUM, 2024, 61(1): 34-40.
[2] FANG Jiu-kang, DONG Shu-hong. Peeling Behaviors of Graphene Film by Molecular Dynamics Simulations [J]. VACUUM, 2023, 60(5): 60-65.
[3] ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun. Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes [J]. VACUUM, 2022, 59(1): 48-53.
[4] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
[5] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[6] RAN Biao, LIU Fei, YU Xiang. In-situ Growth of Graphene on Cemented Carbide through Amorphous SiC [J]. VACUUM, 2019, 56(4): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .