欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2019, Vol. 56 ›› Issue (4): 24-30.doi: 10.13385/j.cnki.vacuum.2019.04.06

Previous Articles     Next Articles

In-situ Growth of Graphene on Cemented Carbide through Amorphous SiC

RAN Biao, LIU Fei, YU Xiang   

  1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • Received:2018-12-14 Published:2019-08-22

Abstract: Graphene is a thin film material with six angle honeycomb layered structure, exhibiting an ultralow friction coefficient in vacuum. Aiming at the lubrication problem of cemented carbide drilling tool in space drilling, amorphous SiC thin films were deposited on cemented carbide substrates by magnetron sputtering, and in situ growth of graphene on cemented carbide was obtained by the bonded phase Co. This paper demonstrated the effects of annealing temperature, annealing time and C/Si atomic ratio on the quality of graphene, and summarized the mechanism of Co catalyzed amorphous SiC in the preparation of graphene. Which provided a theoretical basis for graphene in the application of vacuum drilling tool.

Key words: graphene, annealing temperature, annealing time, C/Si atom ratio

CLC Number: 

  • TB43
[1] 宋惠. 多尺度结构超润滑碳基薄膜的设计真空延寿及机理[D]. 中国科学院大学, 2016.
[2] 李军. 石墨烯薄膜阴极材料的场发射性能研究[D]. 中国科学院研究生院中国科学院大学, 2012.
[3] 蒲吉斌,王立平,薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1):93-112.
[4] 范依航,郝兆朋. 硬质合金刀具切削钛合金Ti6Al4V界面摩擦特性研究[J]. 润滑与密封, 2015(6):65-69.
[5] Song H, Ji L, Li H, et al.Self-forming oriented layer slip and macroscale super-low friction of graphene[J]. Applied Physics Letters, 2017, 110(7):073101-073108.
[6] Machá P, Fidler T, Cichoň S, et al.Synthesis of graphene on Co/SiC structure[J]. Journal of Materials Science Materials in Electronics, 2013, 24(10):3793-3799.
[7] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
[8] Bae S, Kim H, Lee Y, et al.Roll-to-Roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnol, 2010(5):574-578.
[9] Hao X, Chen Y, Wang Z, et al.Morphology and structure of epitaxial graphene grown on 6H-SiC (0001) substrates by modified argon-assisted epitaxial method[J]. Materials Letters, 2014, 115(2):144-146.
[10] Choucair M, Thordarson P, Stride J A.Gram-scale production of graphene based on solvothermal synthesis and sonication.[J]. Nature Nanotechnology, 2009, 4(1):30-39.
[11] Yu Q, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators[J]. Applied Physics Letters, 2008, 93(11):113103-1-113103-3.
[12] 李坤威,郝欢欢,刘晶冰,等. 拉曼光谱表征石墨烯材料研究进展[J]. 化学通报, 2017, 80(3):236-240.
[13] Machá P, CichoňS, Mišková L, et al. Graphene preparation by annealing of Co/SiC structure[J]. Applied Surface Science, 2014, 320(6):544-551.
[14] Li C, Li D, Yang J, et al.Preparation of Single-and Few- Layer Graphene Sheets Using Co Deposition on SiC Substrate[J]. Journal of Nanomaterials, 2011, 2011(1687-4110).
[15] 王党朝. SiC基石墨烯材料制备及表征技术研究[D]. 西安:西安电子科技大学, 2012.
[16] 吴娟霞,徐华,张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3):301-318.
[17] 李赟,尹志军,赵志飞,等. 退火时间对SiC热解法制备石墨烯薄膜的影响[J]. 固体电子学研究与进展, 2013, 33(3):276-279.
[18] 刘飞. 金属催化SiC制备石墨烯的研究[D]. 中国地质大学(北京), 2017.
[19] 周琪,钟永辉,陈星,等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2):255-262.
[1] WU Xing, JIANG Ai-hua, CHENG Yong. Effect of RF Power on Structure and Mechanical Properties of DLC Films [J]. VACUUM, 2019, 56(4): 34-36.
[2] LI Bao-chang, LIU Guang-zhuang, YANG Zhao, LUO Jun-yao, TA Shi-wo. Study on Metallization Technology of Ni-Zn Ferrite Substrate [J]. VACUUM, 2019, 56(4): 31-33.
[3] LI Jian, TONG Hong-hui, DAN Min, JIN Fan-ya, WANG Kun, CHEN Lun-jiang. Applications and research progress of field emission electron sources [J]. VACUUM, 2019, 56(3): 27-31.
[4] ZHAO Yun, MU Jia-li, LI Ming-hua, LI Wen-long, YAO Chun-long. Research on improvement of film surface defects of reflectors based on QFD and DOE [J]. VACUUM, 2019, 56(3): 32-36.
[5] LI Ru-yong, DUAN Ping, CUI Min, WANG Ji-you, YUAN An-juan, DENG Jin-xiang. Effect of post-annealing on Mg doped Ga2O3 films deposited by RF magnetron sputtering [J]. VACUUM, 2019, 56(3): 37-40.
[6] ZHANG Fen-li, WANG Jie-feng, DENG Jing-lian, SUN Hui-fang. Application of self-cleaning anti-reflection coating in solar collector tube [J]. VACUUM, 2019, 56(3): 41-43.
[7] LI Hao, WANG Dong-wei, ZHANG Chuan, LIU Chan, HUANG Mei-dong. Study on corrosion-resistance of Cr/CrN multilayers by arc ion plating [J]. VACUUM, 2019, 56(3): 21-26.
[8] . [J]. VACUUM, 2019, 56(3): 78-80.
[9] LIU Chan, WANG Dong-wei, LI Xiao-min, WU Ying-tong, HUANG Mei-dong. Influence of pulsed negative bias on structure and properties of carbon films grown by magnetron sputtering [J]. VACUUM, 2019, 56(2): 69-73.
[10] . [J]. VACUUM, 2019, 56(2): 78-80.
[11] WANG Fu-zhen, CHEN Da-min, YAN Yuan-quan. The cleaning sources with argon ions using vacuum arc discharge technology [J]. VACUUM, 2019, 56(1): 27-33.
[12] XU Jun-qi, LI Hou-jun, LI Mian, WANG Jian, SU Jun-hong, GOLOSOV Dmitriy A.. Optical and laser damage characteristics of TiO2 films prepared by thermal evaporation deposition technique [J]. VACUUM, 2019, 56(1): 39-44.
[13] CHEN Bo, YANG Fei, LI Jian-chang. Studies on fatigue failure of flexible thin film materials [J]. VACUUM, 2019, 56(1): 20-26.
[14] ZHONG Zhao-jin, CAO Xin, GAO Qiang, HAN Na, CUI Jie-dong, SHI Li-fen, YAO Ting-ting, MA Li-yun, PENG Shou. Effect of RF sputtering power on properties of AZO thin films deposited at room temperature [J]. VACUUM, 2019, 56(1): 45-48.
[15] ZHAO Yan-hui, SHI Wen-bo, LIU Zhong-hai, LIU Zhan-qi, YU Bao-hai. Effect of deposition process parameters on arc ion plating [J]. VACUUM, 2018, 55(6): 49-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!