欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (6): 31-38.doi: 10.13385/j.cnki.vacuum.2025.06.05

• Vacuum Acquisition System • Previous Articles     Next Articles

Design of Wetting Research Platform for High-temperature Liquid Lithium with Structural Materials of Fusion Reactor

YANG Long1,2, MENG Xiancai1,2, LIANG Lizhen2,3, YAN Zhen2, LI Xu2, ZHANG Dehao3, ZUO Guizhong3   

  1. 1. School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
    2. Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230031, China;
    3. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2024-11-18 Online:2025-11-25 Published:2025-11-27

Abstract: The wettability of liquid lithium (Li) on the substrate surface is a key factor to determine the performance of the liquid Li first wall. A wettability research platform for the liquid metal and solid materials was designed, and the key problems of the platform are simulated and calculated theoretically. The ANSYS software was used to simulate the stress and heat distribution of the platform test chamber and injection system. The results show that the maximum deformation of 304 stainless steel test chamber with 250 mm outer diameter and 3 mm wall is about 0.045 mm, and the maximum stress intensity is 29.876 MPa, which is less than the allowable stress of 137 MPa under one atmosphere pressure. The maximum equivalent stress is about 26.708 MPa, which is less than the yield limit of 205 MPa. The limit distance between the needle and heating wire is 50 mm when the heating wire temperature is 400 ℃. When the internal pressure difference between the syringe and test chamber is 600 Pa and -465 Pa respectively, the liquid Li can be inhaled and dripped through a 1 mm diameter needle. During the operation of the system, filling the test chamber with argon gas of more than 0.26 Pa is conducive to protecting the wall and observation window of the test chamber, and reducing the influence of the detection material film. Based on the above results, the platform was successfully built and Li with a diameter of 3 mm was dripped out.

Key words: wettability, liquid lithium, first wall, nuclear fusion

CLC Number:  TB79

[1] WANG Z, OREJON D, TAKATA Y, et al.Wetting and evaporation of multicomponent droplets[J]. Physics Reports, 2022, 960: 1-37.
[2] ZINKLE S.Briefing on and discussion of the results from the subcommittee dealing with materials science and technology research opportunities in the next 10-20 years[R]. FESAC-Materials-Science-Final-Report, 2012.
[3] 郭子成,罗青枝,荣杰. 润湿现象和毛细现象的热力学描述[J]. 大学物理,2000,19(6):19-21.
[4] 萨·杰拉,张红路. 润湿在印刷中的应用[J]. 印刷科技情报,1992(1):35-46.
[5] 段晓侠. 湿润疗法在压疮护理中的应用[J]. 中华全科医学,2009,7(4):429-430.
[6] 魏建华,封兴华,张浚睿,等. QCM-D技术在不同润湿性表面蛋白吸附研究中的应用[J]. 牙体牙髓牙周病学杂志,2008,18(7):396-398.
[7] BOLT H, BARABASH V, KRAUSS W, et al.Materials for the plasma-facing components of fusion reactors[J]. Journal of Nuclear Materials, 2004, 329: 66-73.
[8] RAFFRAY A R, NYGREN R, WHYTE D G, et al.High heat flux components—Readiness to proceed from near term fusion systems to power plants[J]. Fusion Engineering and Design, 2010, 85(1): 93-108.
[9] 章志涛,丁芳,罗宇,等. 小波阈值去噪在偏滤器光谱信号处理中的应用[J]. 量子电子学报,2022,39(3):307-315.
[10] KAPAT A, ALLAIN J P, BEDOYA F, et al.Liquid lithium wetting and percolation in a porous tungsten/liquid Li plasma facing component (PFC)[J]. Fusion Engineering and Design, 2022, 178: 113087.
[11] 吴玉程,盛学洋,马冰,等. 核聚变装置偏滤器靶板材料选择与研究进展[J]. 中国材料进展,2024,43(9):807-823.
[12] ONO M, JAWORSKI M A, KAITA R, et al.Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development[J]. Nuclear Fusion, 2013, 53(11): 113030.
[13] MAJESKI R, JARDIN S, KAITA R, et al.Recent liquid lithium limiter experiments in CDX-U[J]. Nuclear Fusion, 2005, 45(6): 519.
[14] MAZZITELLI G, APICELLA M L, FRIGIONE D, et al.FTU results with a liquid lithium limiter[J]. Nuclear Fusion, 2011, 51(7): 073006.
[15] MAZZITELLI G, APICELLA M L, RIDOLFINI V P, et al.Review of FTU results with the liquid lithium limiter[J]. Fusion Engineering and Design, 2010, 85(6): 896-901.
[16] HU J S, ZUO G Z, MAINGI R, et al.Experiments of continuously and stably flowing lithium limiter in EAST towards a solution for the power exhaust of future fusion devices[J]. Nuclear Materials and Energy, 2019, 18: 99-104.
[17] MIRNOV S V, BELOV A M, DJIGAILO N T, et al.Experimental test of the system of vertical and longitudinal lithium limiters on T-11M Tokamak as a prototype of plasma facing components of a steady-state fusion neutron source[J]. Nuclear Fusion, 2015, 55(12): 123015.
[18] ZUO G Z, LI C L, MAINGI R, et al.Results from a new flowing liquid Li limiter with TZM substrate during high confinement plasmas in the EAST device[J]. Physics of Plasmas, 2020, 27(5): 052506.
[19] FRANCIS C F J, KYRATZIS I L, BEST A S. Lithium‐ion battery separators for ionic‐liquid electrolytes: a review[J]. Advanced Materials, 2020, 32(18): 1904205.
[20] ZUO G Z, HU J S, MAINGI R, et al.Improvement on the plasma performances via application of flowing lithium limiters in EAST Tokamak[J]. Physica Scripta, 2020, 2020(T171): 014008.
[21] DE ANGELI M, LAGUARDIA L, MADDALUNO G, et al.Investigation on FTU dust and on the origin of ferromagnetic and lithiated grains[J]. Nuclear Fusion, 2015, 55(12): 123005.
[22] VERSHKOV V A, SARYCHEV D V, NOTKIN G E, et al.Review of recent experiments on the T-10 Tokamak with all metal wall[J]. Nuclear Fusion, 2017, 57(10): 102017.
[23] MORGAN T W, RINDT P, van EDEN G G, et al. Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices[J]. Plasma Physics and Controlled Fusion, 2017, 60(1): 014025.
[24] GÓMEZ-GARCÍA A, JIMÉNEZ D A A, ZAMORA W J, et al. Navigating the chemical space and chemical multiverse of a unified Latin American natural product database: LANaPDB[J]. Pharmaceuticals, 2023, 16(10): 1388.
[25] Tanke V F B, Al R S, ALONSO van der WESTEN S, et al. LiMeS-Lab: an integrated laboratory for the development of liquid-metal shield technologies for fusion reactors[J]. Journal of Fusion Energy, 2023, 42(2): 44.
[26] 范永山,杜畅通,张化一,等. XiPAF重离子同步加速器超高真空系统设计[J]. 工程科学与技术,2025,57(1):339-346.
[27] MENG X C, ZUO G Z, XU W, et al.Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium[J]. Fusion Engineering and Design, 2018, 128: 75-81.
[28] 何惊华. 金属锂及氢化锂在水气氛中反应机理的理论研究[D]. 成都:四川师范大学, 2005.
[29] MENG X C, XU C, ZUO G Z, et al.Corrosion characteristics of copper in static liquid lithium under high vacuum[J]. Journal of Nuclear Materials, 2019, 513: 282-292.
[30] LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A.Application of lithium in systems of fusion reactors. 1. Physical and chemical properties of lithium[J]. Plasma Devices and Operations, 2009, 17(1): 42-72.
[31] 丘克强,段文军,陈启元. 金属在真空状态下的蒸发速率[J]. 有色金属,2002,54(2):48-52.
[1] WU Rong-yan, WU Ya-xin, ZHOU Jian-liang, YANG Pu-qiong, WU Hong-hu, CHEN Rong-cai. Research Advances on Space Charge Limiting Current of Equivalent Diode for Tetrode [J]. VACUUM, 2023, 60(1): 62-70.
[2] WANG Kun, WANG Shi-qing, LI Jian, DAN Min, CHEN Lun-jiang. Thickness Uniformity of Anti-Seizing Coating for Fasteners Prepared by Magnetron Sputtering [J]. VACUUM, 2021, 58(1): 67-71.
[3] LI Jian, TONG Hong-hui, DAN Min, JIN Fan-ya, WANG Kun, CHEN Lun-jiang. Analysis of Feasibility for Diamond Like Carbon Films Using as Negative Hydrogen Ions Surface Conversion Materials [J]. VACUUM, 2020, 57(4): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .