VACUUM ›› 2019, Vol. 56 ›› Issue (6): 43-48.doi: 10.13385/j.cnki.vacuum.2019.06.08
Previous Articles Next Articles
SONG Qing-zhu1,2, DONG Hui3, E Dong-mei1, WANG Ling-ling2, ZHANG Ning4, QIAO Zhong-lu4
CLC Number:
[1] 宋青竹,张哲魁,孙足来,等. 冷坩埚技术进展[J].真空,2014,51(4):58-62. [2] Okumura T, Yamamoto K, Shibata M. Large scale cold crucible levitation melting furnace with bottom taping nozzle[C].Proceeding of the 6th International conference. Electromagnetic Proceeding of Materials EMP2009,Oct.19-23,2009,Dresden,Germany, 521-524. [3] Saito K, Okumura T, Yamamoto K. Large Scale cold crucible levitation melting furnace for titanium[C]. Proceeding of the 8th International Conference on Electromagnetic Processing of Materials EPM2015,Oct2015, Cannes, France. [4] 朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京:航空工业出版社, 2013:1-41. [5] Cotton J D, Clark L P, Phelps H R.Titanium alloys on the F-22 fighter airframe[J]. Advanced Materials and Processes.2002,160(5):25-29. [6] Phelps H, Cotton J.A Review of Titanium Casting Development for the F-22 Raptor[R], The Aeromat Conference,Charlotte,NC,June, 2012:18-20. [7] Branscomb T. Shell Materials and Casting Methods for Casting Titanium Alloys with Minimun Alpha Case[R]. The Conference of Titanium2015, October 4-7,2015, Orlando,FL, USA. [8] Melissa Allen Volker Güther.Production of TiAl alloys[R]. Titanium Europe2018, May 14th-16th , 2018, Sevilla, Spain. [9] Spitans S, Franz H, Baake E, et al. Large-scale levitation melting and casting of titanium alloys[C]. VШ International Scientific Colloquium,Modelling for Materials Processing, Riga,Sep.2017,21-22,59-66. [10] 只野英顕. 浮揚溶解装置(CCLM)の進展[J].富士时报(FUJI ELECTRIC JOURNAL),1998,71(5),259-263. [11] 篠倉恒樹, 武達男浮揚溶解装置(CCLM)の特長と溶解実績[J].富士时报(FUJI ELECTRIC JOURNAL),1998,71(5):264-267. [12] Osono H, Maeta H, Matsusaka K, et al.Preparation of Highly Perfect Aluminum Crystal by Cold-Crucible Induction Melting in Ultra-high Vacuum. Materials Transactions[J]. Special Issue on Ultra-High Purity Metals(Ⅱ), 2002,43(2):121-124. [13] Bojarevics V, Pericleous K.Dynamic melting model for small samples in cold crucible[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2008,27(2):350-358. [14] Sheiko I V, Shapovalov V A, Yakusha V V, et al.Cooled moulds for ingots formation with electromagnetic effect on melt[J].SOVREM ENNAYA ELEKTRO-METALLURGIYA (Electrometallurgy Today), 2011,4(105):14-19. [15] Protokovilov I.V. MHD technologies in metallurgy (Review)[J].SOVREM ENNAYA ELEKTRO- METALLURGIYA (Electrometallurgy Today), 2011, 4(105):32-41. [16] Robert E.Haun. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder[J].The Minerals,Metals & Materials Society. JOM ,2017,69(12):2615-2620. [17] Sugilal G, Jha J, Rao M H, et al.Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys[J].Materials Today:Proceeding 2016,(3):2942-2950. [18] Morita A, Fukui H, Tadano H, et al.Alloying titanium and tantalum by cold crucible levitation melting (CCLM)furnace[J]. Materials Science and Engineering, A280(2000):208-213. [19] 刘丽君张生栋郄东生等.冷坩埚玻璃固化技术研究进展[J].中国原子能科学研究院年报,2017:39-40. [20] Roach J A, Lopukh D B, Martynov A P, et al. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization-8359[C]. WM2008 Conference, February 24-28,2008,Phoenix, AZ. [21] Yolton C F, Eylon D. Effects of Proceeding and Heat Treatment on Microstructure and Mechanical Properties of Gamma Titanium Aluminde Powder Compacts[C]. TITANIUM’92 SCIENCE AND TECHNOLOGY VOLUMEⅡ Proceedings of a Symposium sponsored by the Titanium Committee of the Minerals, Metals & Materials Structural Metals Division. Held at the Seventh World Titanium Conference June 29-July 2,1992 in San Diego, California. [22] Heidloff A, Rieken J, Medina F.Fabrication of titanium aluminide components by high pressure gas atomization and subsequent EBM additive manufacturing[R].Titanium Europe 2017,May. 17-19,Amsterdam The Netherlands,2017. [23] Schade C, Murphy T, Bernhard G.Titanium alloy development for AM utilizing gas atomization[R].https://www.gknpm.com/globalassets/downloads/hoeganaes/technical-library/technical-papers/am/schade-titanium-alloy-development-for-am-utilizing-gas-atomization.pdf. [24] Abbas S F, Lee S, Lee B, et al. Synthesis Of Titanium Powder With Cold Crucible Based Induction Skull Melting Gas Atomization For Additive Manufacturing[R].: European Powder Metallurgy Association (Euro PM2018 Congress and Exhibition) Oct.2018, Bilbao, Spain. [25] Harding R, Wickins M, Keough G, et al.The Use of Combined DC and AC Fields to Increase Superheat in an Induction Skull Melting Furnace. LMPC,2005. [26] Pericleous K, Bojaverics V, Djambazov G, et al.Experimental and numerical study of the cold crucible melting process.Applied Mathematical Modelling[J] ,30(2006):1262-1280. [27] Dumont M, Ernst R,Fautrelle Y, et al. Electromagnetic Processing from AC to DC field and Multiphysics Modeling: a Way for Process Innovation. Proceedings of the2015 COMSOL Conferenc in Grenoble,France. [28] OCAS. [EB/OL].[2019-05-08]. https://www.ocas.be/equiment/#/casting-cold-crucible-levitation-melter. |
[1] | ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Wei-yu, ZHANG Li-yuan. FTA Analysis of Motion Mechanism for Vacuum Equipment Automatic Door [J]. VACUUM, 2019, 56(5): 34-39. |
[2] | CHEN Bo, YANG Fei, LI Jian-chang. Studies on fatigue failure of flexible thin film materials [J]. VACUUM, 2019, 56(1): 20-26. |
|