欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2019, Vol. 56 ›› Issue (6): 43-48.doi: 10.13385/j.cnki.vacuum.2019.06.08

Previous Articles     Next Articles

Development of Electromagnetic Levitation Vacuum Melting Casting Technology

SONG Qing-zhu1,2, DONG Hui3, E Dong-mei1, WANG Ling-ling2, ZHANG Ning4, QIAO Zhong-lu4   

  1. 1.Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2.SAC/TC18, Shenyang 110042,China;
    3.Agilent Technologies (China) Co., Ltd., Shanghai 200080, China;
    4.Shenyang Huizhen Vacuum Technology Co., Ltd., Shenyang 110042, China;
  • Received:2019-05-12 Online:2019-11-25 Published:2019-12-03

Abstract: This paper introduces the development and current situation of electromagnetic coils levitation melting ELM, cold crucible levitation melting CCLM, cold crucible semi-levitation melting semi- CCLM which is induction skull melting ISM, three types of vacuum melting casting technology. The application of this kind of technology in precision casting, material purification, ingot material and alloy preparation, gas atomization powder were discussed. The development trend of levitation melting technology in material type, equipment capacity, superheat of melt and operation process is indicated. With the development of water-cooled copper crucible technology, semi-levitation melting technology developed rapidly and evolved into various forms, which promoted the development of new materials. The fusion of laser and plasma heating technology has laid a foundation for the implementation of the new technology.

Key words: electromagnetic levitation, levitation melting, CCLM, ISM, titanium alloy investment casting

CLC Number: 

  • TF13
[1] 宋青竹,张哲魁,孙足来,等. 冷坩埚技术进展[J].真空,2014,51(4):58-62.
[2] Okumura T, Yamamoto K, Shibata M. Large scale cold crucible levitation melting furnace with bottom taping nozzle[C].Proceeding of the 6th International conference. Electromagnetic Proceeding of Materials EMP2009,Oct.19-23,2009,Dresden,Germany, 521-524.
[3] Saito K, Okumura T, Yamamoto K. Large Scale cold crucible levitation melting furnace for titanium[C]. Proceeding of the 8th International Conference on Electromagnetic Processing of Materials EPM2015,Oct2015, Cannes, France.
[4] 朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京:航空工业出版社, 2013:1-41.
[5] Cotton J D, Clark L P, Phelps H R.Titanium alloys on the F-22 fighter airframe[J]. Advanced Materials and Processes.2002,160(5):25-29.
[6] Phelps H, Cotton J.A Review of Titanium Casting Development for the F-22 Raptor[R], The Aeromat Conference,Charlotte,NC,June, 2012:18-20.
[7] Branscomb T. Shell Materials and Casting Methods for Casting Titanium Alloys with Minimun Alpha Case[R]. The Conference of Titanium2015, October 4-7,2015, Orlando,FL, USA.
[8] Melissa Allen Volker Güther.Production of TiAl alloys[R]. Titanium Europe2018, May 14th-16th , 2018, Sevilla, Spain.
[9] Spitans S, Franz H, Baake E, et al. Large-scale levitation melting and casting of titanium alloys[C]. VШ International Scientific Colloquium,Modelling for Materials Processing, Riga,Sep.2017,21-22,59-66.
[10] 只野英顕. 浮揚溶解装置(CCLM)の進展[J].富士时报(FUJI ELECTRIC JOURNAL),1998,71(5),259-263.
[11] 篠倉恒樹, 武達男浮揚溶解装置(CCLM)の特長と溶解実績[J].富士时报(FUJI ELECTRIC JOURNAL),1998,71(5):264-267.
[12] Osono H, Maeta H, Matsusaka K, et al.Preparation of Highly Perfect Aluminum Crystal by Cold-Crucible Induction Melting in Ultra-high Vacuum. Materials Transactions[J]. Special Issue on Ultra-High Purity Metals(Ⅱ), 2002,43(2):121-124.
[13] Bojarevics V, Pericleous K.Dynamic melting model for small samples in cold crucible[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2008,27(2):350-358.
[14] Sheiko I V, Shapovalov V A, Yakusha V V, et al.Cooled moulds for ingots formation with electromagnetic effect on melt[J].SOVREM ENNAYA ELEKTRO-METALLURGIYA (Electrometallurgy Today), 2011,4(105):14-19.
[15] Protokovilov I.V. MHD technologies in metallurgy (Review)[J].SOVREM ENNAYA ELEKTRO- METALLURGIYA (Electrometallurgy Today), 2011, 4(105):32-41.
[16] Robert E.Haun. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder[J].The Minerals,Metals & Materials Society. JOM ,2017,69(12):2615-2620.
[17] Sugilal G, Jha J, Rao M H, et al.Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys[J].Materials Today:Proceeding 2016,(3):2942-2950.
[18] Morita A, Fukui H, Tadano H, et al.Alloying titanium and tantalum by cold crucible levitation melting (CCLM)furnace[J]. Materials Science and Engineering, A280(2000):208-213.
[19] 刘丽君张生栋郄东生等.冷坩埚玻璃固化技术研究进展[J].中国原子能科学研究院年报,2017:39-40.
[20] Roach J A, Lopukh D B, Martynov A P, et al. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization-8359[C]. WM2008 Conference, February 24-28,2008,Phoenix, AZ.
[21] Yolton C F, Eylon D. Effects of Proceeding and Heat Treatment on Microstructure and Mechanical Properties of Gamma Titanium Aluminde Powder Compacts[C]. TITANIUM’92 SCIENCE AND TECHNOLOGY VOLUMEⅡ Proceedings of a Symposium sponsored by the Titanium Committee of the Minerals, Metals & Materials Structural Metals Division. Held at the Seventh World Titanium Conference June 29-July 2,1992 in San Diego, California.
[22] Heidloff A, Rieken J, Medina F.Fabrication of titanium aluminide components by high pressure gas atomization and subsequent EBM additive manufacturing[R].Titanium Europe 2017,May. 17-19,Amsterdam The Netherlands,2017.
[23] Schade C, Murphy T, Bernhard G.Titanium alloy development for AM utilizing gas atomization[R].https://www.gknpm.com/globalassets/downloads/hoeganaes/technical-library/technical-papers/am/schade-titanium-alloy-development-for-am-utilizing-gas-atomization.pdf.
[24] Abbas S F, Lee S, Lee B, et al. Synthesis Of Titanium Powder With Cold Crucible Based Induction Skull Melting Gas Atomization For Additive Manufacturing[R].: European Powder Metallurgy Association (Euro PM2018 Congress and Exhibition) Oct.2018, Bilbao, Spain.
[25] Harding R, Wickins M, Keough G, et al.The Use of Combined DC and AC Fields to Increase Superheat in an Induction Skull Melting Furnace. LMPC,2005.
[26] Pericleous K, Bojaverics V, Djambazov G, et al.Experimental and numerical study of the cold crucible melting process.Applied Mathematical Modelling[J] ,30(2006):1262-1280.
[27] Dumont M, Ernst R,Fautrelle Y, et al. Electromagnetic Processing from AC to DC field and Multiphysics Modeling: a Way for Process Innovation. Proceedings of the2015 COMSOL Conferenc in Grenoble,France.
[28] OCAS. [EB/OL].[2019-05-08]. https://www.ocas.be/equiment/#/casting-cold-crucible-levitation-melter.
[1] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Wei-yu, ZHANG Li-yuan. FTA Analysis of Motion Mechanism for Vacuum Equipment Automatic Door [J]. VACUUM, 2019, 56(5): 34-39.
[2] CHEN Bo, YANG Fei, LI Jian-chang. Studies on fatigue failure of flexible thin film materials [J]. VACUUM, 2019, 56(1): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .