欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (1): 67-75.doi: 10.13385/j.cnki.vacuum.2020.01.13

Previous Articles     Next Articles

Research Status and Development Trend of Ceramic Precursors

WANG Zhi-yong1,2, ZHAO Yu-hui2,3, ZHAO Ji-bin2,3, WANG Zhi-guo2,3, HE Zhen-feng2,3   

  1. 1.College of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China;
    2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2019-09-05 Online:2020-01-25 Published:2020-03-17

Abstract: Ceramic materials have excellent thermal and mechanical properties with important application prospects in many fields. Its inherent high strength and high hardness bring many difficulties to the forming of ceramic parts. The introduction of material-adding manufacturing technology into ceramic forming will effectively overcome such difficulties and provide a new possibility for the complex forming processes of ceramic materials. In this paper, from the point of view of raw material status, the research status and progress of several common ceramic augmentation manufacturing technologies are reviewed in detail. The advantages and disadvantages of each technology in the field of ceramics are systematically compared. The development of ceramic augmentation manufacturing technology in the future is prospected.

Key words: ceramics, supplementary manufacturing, three-dimensional printing, polymer

CLC Number: 

  • TQ174.5
[1] 柴威, 邓乾发, 王羽寅, 等. 碳化硅陶瓷的应用现状[J]. 轻工机械, 2012, 30(4): 117-120.
[2] 梁栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38(4): 231-247.
[3] Marcus H L, Beaman J J, BarlowJ W, et al. Bourell, Solid freeform fabricationpowder processing[J]. American Ceramic Society Bulletin, 1990, 69(6): 1030-1031.
[4] Sachs E, Cima M, Cornie J.Three-dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. CIRP Annals-Manufacturing Technology, 1990, 39(1): 201-204.
[5] 伍海东, 刘伟, 伍尚华, 等. 陶瓷增材制造技术研究进展[J]. 陶瓷学报, 2017, 38(4): 451-459.
[6] Pan Y Q, Zheng R, Liu F B et al. The use of CT scan and stereo lithography apparatus technologies in a canine individualized rib prosthesis[J]. International Journal of Surgery, 2014, 12(1): 71-75.
[7] Nakamoto T, Yamaguchi K.Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]// Micro Machine and Human Science, 1996. Proceedings of the Seventh International Symposium. IEEE, 1996.
[8] 刘厚才. 光固化三维打印快速成形关键技术研究[D]. 武汉: 华中科技大学, 2009.
[9] Zhou W Z, Li D, Chen Z W, et al.Direct fabrication of an integral ceramic mould by stereolithography[J]. P I Mech Eng B-J Eng, 2010, 224(B2): 237-243.
[10] Chen Z, Li D, Zhou W.Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1249-1258.
[11] Nguyen N T, Delhote N, Ettorre M, et al.Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(8):2757-2762.
[12] Leigh S J, Purssell C, Bowen J, et al.A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin[J]. Sensors and Actuators A: Physical, 2011, 168(1): 66-71.
[13] Chen W, Kirihara S, Miyamoto Y.Fabrication and Measurement of Micro Three-Dimensional Photonic Crystals of SiO2 Ceramic for Terahertz Wave Applications[J]. Journal of the American Ceramic Society, 2007, 90(7): 2078-2081.
[14] Kirihara S, Niki T.Three‐Dimensional Stereolithography of Alumina Photonic Crystals for Terahertz Wave Localization[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 32-37.
[15] Scalera F, Corcione C E, Montagna F, et al.Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering[J]. Ceramics International, 2014, 40(10): 15455-15462.
[16] Du D, Asaoka T, Ushida T, et al.Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography[J]. Biofabrication, 2014, 6(4): 045002.
[17] Sarment D P, Al-Shammari K, Kazor C E.Stereolithographic surgical templates for placement of dental implants in complex cases[J]. International Journal of Periodontics & Restorative Dentistry, 2003, 23(3): 287-295.
[18] Lian Q, Sui W, Wu X, et al.Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography[J]. Rapid Prototyping Journal, 2018, 24(1): 114-119.
[19] Nakamoto T, Yamaguchi K. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]. Micro Machine and Human Science, 1996, Proceedings of the Seventh International Symposium(1996)53-58.
[20] Bertsch A, Zissi S, Jezequel J, et al.Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 1997, 3(2): 42-47.
[21] 张航, 许宋锋, 熊胤泽, 等. 多孔β-TCP生物陶瓷DLP打印工艺研究[J/OL]. 机械工程学报: 1-7[2019-08-30].
[22] Varadan V K, Jiang X, Varadan V V.Microstereolithography and other fabrication techniques for 3D MEMS[J]. John Wiley & Sons, 2001, 11(2):65.
[23] Le H P.Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology, 1998, 42(1): 49-62.
[24] 周振君, 丁湘, 郭瑞松, 等. 陶瓷喷墨打印成型技术进展[J]. 硅酸盐通报, 2000(6): 37-41.
[25] 陈燎, 唐兴伟, 周涵, 等. 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用[J]. 材料导报, 2017, 31(9): 158-164.
[26] Li J P, Habibovic P, Van Den Doel M, et al. K. de Groot, Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810-2820.
[27] Sachs E M, Haggerty J S, Cima M J, et al.Three-dimensional printing techniques: US, 5204055A[P]. 1993.
[28] Deckard C R.Method and apparatus for producing parts by selective sintering: US,4863538A[P]. 1989.
[29] 付旻慧, 刘凯, 刘洁, 等. 碳化硅零件的激光选区烧结及反应烧结工艺[J]. 中国机械工程, 2018, 29(17): 2111-2118.
[30] 赵靖, 马文江, 曹文斌, 等. 氮化硅陶瓷粉末的选区激光烧结[J]. 北京科技大学学报, 2006(11): 1038-1041.
[31] Kunieda M, Nakagawa T.Manufacturing of laminated deep drawing dies by laser beam cutting[J]. Advanced Technology of Plasticity, 1984(1): 520-525.
[32] Dolenc A.An overview of rapid prototyping technologies in manufacturing[J]. Citeseer, 1994, 19(5): 57-63.
[33] Griffin C, Daufenbach J, McMillin S. Desktop manufacturing: LOM vs. pressing[J]. Am. Ceram. Soc. Bull, 1994, 73(8): 109-113.
[34] Griffin C, Daufenbach J, McMillin S. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique[J]. Solid Freeform Fabrication, 1994(17): 17-24.
[35] Crump S S.Apparatus and method for creating three-dimensional objects: US, 5121329A[P]. 1992.
[36] Chua C K, Leong K F, Lim C S.Rapid prototyping: principles and applications[M]. World Scientific, 2003.
[37] 张军战, 张海昇, 张颖, 等. 聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展[J]. 材料导报, 2017, 31(19): 91-96.
[38] 陈朝辉. 先驱体转化陶瓷基复合材料[M]. 北京: 北京出版社, 2011.
[39] 何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J]. 硅酸盐通报, 2009, 28(06): 1197-1202+1207.
[40] Yajima S, Hayashi J, Omori M, et al.Contious silicon carbide fibers of high tensile strength[J]. Chem. Lett., 1975: 931-43.
[41] Smith T L J. Process for the production of silicon carbide by the pyrolysis of a polycarbosilane polymer: US, 4631179[P].1986-12-23.
[42] 宋麦丽, 田蔚, 闫联生, 等. 聚碳硅烷制备C/C-SiC高温复合材料的应用[J]. 固体火箭技术, 2014, 37(1): 128-133.
[43] 乔玉林, 薛胤昌. 聚合物先驱体材料体系的陶瓷化研究进展与展望[J]. 材料导报, 2016, 30(11): 1-6.
[44] 余煜玺, 李效东. SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化[J]. 硅酸盐学报, 2004, 32(4): 494-496+501.
[45] 郑春满, 李效东. 预氧化聚铝碳硅烷的热分解动力学及其机理[J]. 化学学报, 2007, 65(4): 355-360.
[46] 楚增勇, 冯春祥, 宋永才, 等. 先驱体转化法连续SiC纤维国内外研究与开发现状[J]. 无机材料学报, 2002(2): 193-201.
[47] 范小林, 宋永才, 李效东, 等. 耐高温SiC纤维的研究动态[J]. 宇航材料工艺, 1998(1): 13-17.
[48] 蔡溪南, 谢征芳, 王军, 等. Si-Al-C-N陶瓷先驱体研究进展[J]. 现代化工, 2010, 30(9): 13-17+19.
[49] 谢征芳, 陈朝辉, 肖加余, 等. 先驱体陶瓷[J]. 高分子材料科学与工程, 2000(6): 7-12.
[50] Tazihemida A, Pailler R, Naslain R.Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers[J]. Journal of Materials Science, 1997, 32: 2359-2366.
[51] 王军, 陈革, 宋永才, 等. 含镍碳化硅纤维的制备及其电磁性能Ⅰ. 含镍碳化硅纤维的制备[J]. 功能材料, 2001, 32(1): 37-39.
[52] Arai M, Isoda T. Poly(organohydrosilazanes): Japan, 6189230[P].1986-05-07.
[53] Redl G, Rochow E G.Internal motion in organosilicon polymers. I. Linear dimethylpolysilazane[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(3): 639-647.
[54] Rochow E G.Polymeric methylsilazanes[J]. Pure and Applied Chemistry, 1966, 13(1-2): 247-262.
[55] 邹铭, 王丹, 赵莉, 等. 常温固化耐高温400℃的有机硅-聚硅氮烷涂料[J]. 表面技术, 2018, 47(5): 83-90.
[56] Economy J, Anderson R.Properties and uses of BN fibers[J]. Chemical Abstract, 1996, 66: 66594.
[57] Maya L.Aminoborane Polymers as precursors of C-N-B ceramic materials[J]. Journal of American Ceramic Society, 1988, 71: 1104-1107.
[58] Johnson R E. Manufacturing of high Boron ceramic fibers from organboron preceramic polymers: US, 4810436[P].1989-05-07.
[59] Seyferth D, Rees W S Jr, Haggerty J S, et al. Preparation of boron-containing ceramic materials by pyrolysis of the decaborane(4)-derived[B10H12·Ph2POPPh2]x Polumers[J]. Chemisty of Materials. 1989, 1: 45~52.
[60] Narula C K, Schaeffer R, Paine R T.Synthesis of boron nitride ceramic from poly precursors[J]. Journal of American Chemical Society, 1987, 109: 5556~5557.
[61] 李文华, 王军, 谢征芳, 等. 新型氮化硼陶瓷纤维先驱体——含硅聚硼氮烷的合成与表征[J]. 化学学报, 2011, 69(16): 1936-1940.
[62] Gadow R, KERN F.A Continuous Liquid Phase Coating Process for Protective Ceramic Layers on Carbon Fibers—Process Optimization for Oxidation Protection and Tensile Strength[J]. Ceramic Engineering&Science Proceedings, 2008, 24(4): 239-246.
[63] 徐天恒. 聚硅氧烷转化SiOC陶瓷微观结构的演变与改性[D]. 长沙:国防科学技术大学, 2011.
[64] 马青松, 陈朝辉, 郑文伟, 等. 用作陶瓷先驱体的聚硅氧烷的交联与裂解[J]. 高分子材料科学与工程, 2004(2): 198-200.
[65] 熊亮萍, 许云书. 陶瓷先驱体聚合物的应用[J]. 化学进展, 2007(4): 567-574.
[66] 黄淼俊, 伍海东, 黄容基, 等. 陶瓷增材制造(3D打印)技术研究进展[J]. 现代技术陶瓷, 2017, 38(4): 248-266.
[1] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering [J]. VACUUM, 2018, 55(5): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .