欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (1): 76-82.doi: 10.13385/j.cnki.vacuum.2020.01.14

Previous Articles     Next Articles

Research on Test, Prediction Method of Molten Pool by Laser Additive Maufacturing

ZHAO Yu-hui1,2, YAO Chao1,2,3, WANG Zhi-guo1,2   

  1. 1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China;
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-09-05 Online:2020-01-25 Published:2020-03-17

Abstract: The forming part quality is mainly affected by the drastic changing of the temperature field during the additive manufacturing process. The molten pool temperature can be predicted by empirical equation to optimize the building process parameters, which will improve the forming quality and ensure the dimensional accuracy of the building parts. In order to build the empirical equation of molten pool temperature, an infrared measuring system was built to measure the molten temperature. The measurement data is used to establish mathematical models by multiple linear regression analysis method in Matlab. According to the comparison of the testing result by infrared measuring system and the calculation results by empirical equation, the mean error is 8.18℃ and the accuracy error is 0.12, which means the empirical equation has a certain accuracy in the appropriate range.

Key words: laser additive manufacturing, prediction method, infrared thermometer, temperature of molten pool

CLC Number: 

  • TG146
[1] 李涤尘, 贺健康, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129-134.
[2] 王华明. 高性能大型金属构件激光增材制造[J]. 航空学报, 2014, 35(10): 2690-2698.
[3] 宋建丽, 李永堂, 邓琦林, 等. 激光熔履成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39.
[4] IBARRA-MEDINA J, PINKERTON A.A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding[J]. Physics Procedia, 2010, 5: 337-346.
[5] TABERNERO I, LAMIKIZ A.Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J]. Journal of Materials Processing Technology, 2012, 212: 516-522.
[6] YASA E, DECKERS J, KRUTH J P.The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327.
[7] 李延民, 刘振侠, 等. 激光多层涂敷过程中的温度场测量与数值模拟[J]. 金属学报, 2003, 39(5): 521-525.
[8] 栗丽, 杨洗陈, 董哲, 等. 激光熔覆中同轴粉末流温度场的CCD检测[J]. 中国激光, 2009, 36(9): 2432-2436.
[9] 申卫国, 岑虎, 雷剑波, 等. 同轴送粉激光熔覆中激光透过率研究[J]. 机械工程学报, 2014, 50(8): 60-65.
[10] 姚山, 曾锋, 叶昌科, 等. 新的激光快速成形方法及应用[J]. 机械工程学报, 2007, 43(5): 231-234.
[11] LABUDOVIC M, HU D, KOVACEVIC R.A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science, 2003, 38(1): 35-49.
[12] TOM GRARGHS, STIJN CLIJSTERS.Determination of geometrical factors in layerwise laser melting using optical process monitoring[J]. Optics and Laser in Engineering, 2011, 49: 1440-1446.
[13] BIN QIAN, LAURI TAIMISTO, ANTTI LEHTI, et al.Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics[J]. Journal of Asian Ceramic Societies, 2014, 64(9): 2-8.
[14] 黄永俊, 曾晓雁, 等. 激光感应复合熔覆中熔覆层有效能量分析[J]. 金属热处理, 2008, 33(5): 44-47.
[15] 李楠. 基于遗传算法的瞬态非线性热传导反问题研究[D]. 大连: 大连理工大学, 2014.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .