欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (6): 10-16.doi: 10.13385/j.cnki.vacuum.2022.06.02

• Vacuum Acquisition System • Previous Articles     Next Articles

Design, Performance Analysis of Leak Rate Testing System for Large Spacecraft

LI Hong-yu1, SU Dong-ping1, DAI Ming-qiao1, SUN Li-zhi2, DOU Wei2, PENG Guang-dong1   

  1. 1. Shanghai Institute of Spacecraft Equipment, Shanghai 200240, China;
    2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2022-06-20 Online:2022-11-25 Published:2022-12-05

Abstract: This work introduces the system composition and design scheme of a large spacecraft leak rate testing for in-orbit spacecraft sealing performance requirement based on leak detection with helium mass spectrometer. The testing efficiency and automation level during spacecraft leak rate testing are improved because of the integrated optimization design, embedded plate construction and remote centralized control. Experimental verification of system leakage detection performance via atmospheric and vacuum helium mass spectrum leak detection shows that, the minimum detectable leakage rate are 7.5×10-10Pa·m3/s with vacuum leak detection method and 2.0×10-6Pa·m3/s with atmospheric accumulation leak detection method for two days. Variation rule of environmental parameters in collection chamber and air tightness under micro-positive pressure are studied, the results indicate that the relative humidity declines with the increasing temperature influenced by external environmental factors. The pressure drop is less than 80Pa within 24h after filling compressed air in the collection chamber with gauge pressure above 1500Pa, and the air tightness meets the requirements of the spacecraft leak rate detection.

Key words: helium mass spectrometer leak detection, leak detection chamber, air tightness, spacecraft propulsion system

CLC Number: 

  • TB774
[1] 范晖. 俄罗斯载人航天器的检漏技术[J]. 环模技术, 1995, 44(3): 62-66.
[2] 喻新发, 闫荣鑫, 邵容平, 等. 空间站在轨密封检漏技术研究[J]. 航天器环境工程, 2008, 25(2): 177-182.
[3] 王勇, 孙立臣, 闫荣鑫, 等. 测试氦质谱检漏仪线性的一种新方法[J]. 中国空间科学技术, 2011, 31(2): 39-42.
[4] 孙伟, 孙立臣, 闫荣鑫, 等. 基于温/压传感器的航天器在轨检漏方法研究[J]. 真空, 2016, 53(5): 45-50.
[5] 李宏宇, 张静, 彭光东, 等. 航天器推进系统漏率测试不确定度评定[J]. 真空科学与技术学报, 2020, 40(7): 625-629.
[6] UNDERWOOD S, LVOVSKY O.Implementation of leak test methods for the international space station(ISS) elements, system and components[R]. Washington D.C: NASA, 2007.
[7] 李宏宇, 彭光东, 韩洋, 等. 基于常压氦质谱累积检漏的定/变容漏率标定技术研究[J]. 真空科学与技术学报, 2018, 38(12): 1033-1038.
[8] 阎治平, 黄淑英. 非真空收集器质谱检漏的研究[J]. 真空科学与技术学报, 1997, 17(1): 69-72.
[9] 杨智涵, 霍晓虹, 吴孝俭, 等. 基于比对定量的氦质谱正压检漏方法[J]. 军民两用技术与产品, 2010(8): 42-44.
[10] 黄文平, 朱长平. 基于氦质谱检漏的吸枪检漏技术研究[J]. 中国仪器仪表, 2016(10): 55-59.
[11] 黄本诚. 神州飞船特大型空间环境模拟器[J]. 航空制造技术, 2005(11): 34-37.
[12] 张世一, 陈丽, 齐晓军, 等. KM5B空间环境模拟试验设备研制[J]. 航天器环境工程, 2016, 33(4): 434-438.
[13] 肖祥正. 质谱检漏技术在我国航天工业领域中的应用(二)[J]. 真空与低温, 2002, 8(1): 8-11.
[14] YOSHITSUGU M, HIROYASU M, KENSHIU W, et al.Development of leak detection system using high temperature -resistant microphones[J]. Journal of Nuclear Science and Technology, 2012, 32(3): 237-244.
[15] GEOFF H.Helium leak detection[J]. Industrial Heating, 2012, 80(3): 43-45.
[16] 中国航天标准化研究所. 氦质谱真空检漏方法: QJ 3123-2000[S]. 北京: 中国航天标准化研究所, 2000.
[17] 喻新发, 周雪茜, 冯琪, 等. 基于质谱分析的航天器工质原位检漏技术研究[J]. 真空科学与技术学报, 2019, 39(11): 958-963.
[18] 全国真空技术标准化技术委员会. 真空技术氦质谱真空检漏方法: GB/T 36176-2018[S]. 北京: 中国标准出版社, 2018.
[19] 冯琪, 窦仁超, 刘一欢. 检漏容器的密封性能对航天器总漏率测试的影响研究[J]. 真空, 2014, 51(6): 52-55.
[20] 武越, 刘金龙. 航天器对接通道泄复压和保压检漏试验方法研究[J]. 真空科学与技术学报, 2016, 36(6): 630-633.
[21] 闫荣鑫, 刘平, 冯琪, 等. 质谱分析多系统航天器检漏研究[J]. 真空科学与技术学报, 2001, 21(4): 42-49.
[1] ZHANG Hai-feng, SUN Li-chen, WANG Li, LIU En-jun, SHI Ji-jun, SUN Li-zhi. Research on Leak Detection Technology for Manned Spacecraft Hatch [J]. VACUUM, 2022, 59(4): 8-11.
[2] HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92.
[3] LV Qian-qian, SUN Zhen-chuan, ZHOU Jian-jun, YANG Zhen-xing, CHEN Rui-xiang, YOU Hui-jie. Laboratory Experiment on the System Performance of Low Vacuum Piping [J]. VACUUM, 2021, 58(3): 7-12.
[4] HE Ping. Study on Leakage Rate Test Method for Composite Cylinder [J]. VACUUM, 2020, 57(6): 54-58.
[5] CAO Hui, HUANG Fan, QI Shi-jin, YANG Jia, CHEN Yao, WANG Min. Development of Helium Leak Detection Pre-packed Feeding Device for the TVS-2M Fuel Rod [J]. VACUUM, 2020, 57(6): 59-63.
[6] ZHANG Hai-feng, SUN Li-chen, GUO Chong-wu, QI Fei-fei, LI Wen-bin. Research on the Total Leakage Test Technology with Static Pressure Rise Method for Sealed Biological Payload [J]. VACUUM, 2020, 57(4): 46-49.
[7] WANG Kai, CUI Yu-hao, LIU Sheng. Reliability analysis of ZQJ-291H helium mass spectrometer leak detector based on FMECA [J]. VACUUM, 2019, 56(3): 48-51.
[8] ZHAO Lan, CHENG Yong-jun, SUN Wen-jun, CHEN Lian, FENG Tian-you, JI Kang. Study on static cumulative comparison calibration method of vacuum leak [J]. VACUUM, 2019, 56(3): 44-47.
[9] CHEN Xin, CHEN Jin-long, ZHU Gen-liang, XU Hong-bing, FU You-kun. Construction of helium recovery and purification system on HL-2M [J]. VACUUM, 2019, 56(2): 16-18.
[10] LIU Xing-yue, WANG Zhen, DOU Ren-chao, CUI Yu-hao, YANG Ding-kui. Developed a method to test total leakage rate of spacecraft based on helium mass spectrometry of LEYBOLD [J]. VACUUM, 2019, 56(2): 62-65.
[11] WANG Chun-ming, ZHANG Ming-da, SU Yu-ping. Discussion on leak detection method of vacuum application equipment [J]. VACUUM, 2019, 56(1): 52-55.
[12] Wu Yue, E Dong-mei, Du Peng, Guo Zi-yin, Chen Shi-yu, Wang Jing. The leak detection method of the joint of spacecraft capsule [J]. VACUUM, 2018, 55(6): 1-4.
[13] GUO Chong-wu, SUN Li-chen, SUN Li-zhi, QI Fei-fei, LI Wen-bin. Mechanism research of double seal leakage in single-O-ring seal structure [J]. VACUUM, 2018, 55(6): 19-23.
[14] REN Guo-hua, LI Zheng, SUN Li-zhi, DOU Ren-chao, MENG Dong-hui, ZHANG Hai-feng, ZHAO Yue-shuai. Study on leak detection method of heat pipe [J]. VACUUM, 2019, 56(4): 6-9.
[15] XING Yin-long, LI Bo, WU Jie-feng, LIU Zhi-hong, ZHOU Neng-tao. Optimization Analysis of Pressure Detection by Helium Mass Spectrometry of ITER Insulation Coils [J]. VACUUM, 2019, 56(4): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .