欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (3): 7-12.doi: 10.13385/j.cnki.vacuum.2021.03.02

• Vacuum Acquisition System • Previous Articles     Next Articles

Laboratory Experiment on the System Performance of Low Vacuum Piping

LV Qian-qian1,2, SUN Zhen-chuan1,2, ZHOU Jian-jun1,2, YANG Zhen-xing1,2, CHEN Rui-xiang1,2, YOU Hui-jie3   

  1. 1. State Key Laboratory of Shield Machine and Boring Technology, Zhenzhou 450001, China;
    2. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, China;
    3. Yellow River Engineering Design and Research Institute Co.,Ltd., Zhengzhou 450003, China
  • Received:2020-05-08 Online:2021-05-25 Published:2021-06-01

Abstract: To explore the vacuum pump equipment and pipeline structure performance of low vacuum pipeline system in specific conditions, the experiment platform of low vacuum pipeline system was set up in this paper. The experimental study was carried out on vacuum pump equipment performance and pipeline structure deformation law based on the platform, and the following conclusions were reached. The tube wall compressive strain increases with the increase of the absolute value of relative vacuum degree. The increase of the absolute value of relative vacuum degree can reduce the tensile strain caused by the increase of temperature in the tube, while the increase of temperature is beneficial to reduce the compressive strain caused by the increase of relative vacuum degree. When the cooling circulation system is used, the extraction rate of the vacuum pump is basically constant at different temperatures. In different vacuum circumstance the rising rate of temperature heated by the shortwave twin-tube is basically constant. The vacuum can reduce the internal temperature of pipeline structure to some extent under the condition of temperature difference between inside and outside. When cyclic loading is applied, the rebound of structural strain is greater than the initial value after unloading the vacuum.

Key words: low vacuum, vacuum pump, pipeline, mechanical property, cyclic loading

CLC Number: 

  • TB774
[1] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063-1072.
[2] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133-137.
[3] 谢元华, 韩进, 张志军, 等. 真空输送的现状与发展趋势探讨(六)[J]. 真空, 2018, 55(6): 28-32.
[4] 冯仲伟, 方兴, 李红梅, 等. 低真空管道高速磁悬浮系统技术发展研究[J]. 中国工程科学, 2018, 20(6): 105-111.
[5] ROBERT H G.Vacuum tube transportation system[P]. U. S: 2511979, 1950.
[6] 孙钧, 刘子忠, 刘甲朋. 畅想海上交通运输建设的伟大革命——真空高温超导磁浮高速列车桥隧工程前期工作与运行方案探讨[J]. 隧道建设(中英文), 2018, 38(09): 1405-1415+1396.
[7] 张瑞华,严陆光,徐善纲,等. 一种新的高速磁悬浮列车-瑞士真空管道高速磁悬浮列车方案[J]. 变流技术与电力牵引, 2004, (1): 44-46.
[8] 张耀平. 烟台—大连海底真空管道高铁线路方案研究[J]. 隧道建设(中英文), 2020, 40(03): 299-305.
[9] 王博. 真空管道高温超导磁悬浮车气动特性研究[D]. 成都: 西南交通大学, 2017.
[10] 王志飞, 那日苏, 李樊, 等. 低真空管道磁浮系统结构参数优化理论研究[J]. 真空科学与技术学报, 2020, 40(1): 27-32.
[11] 张勇. 低真空管道磁浮运输系统气动特性仿真研究[D]. 成都: 西南交通大学, 2019.
[12] 吴华春, 吴帆, 胡业发, 等. 真空管道列车混合磁悬浮支承设计及载荷研究[J]. 机械设计与制造, 2019(1): 174-177.
[13] 关炎培, 胡业发, 吴帆, 等. 真空管道磁悬浮列车混合悬浮支承设计与研究[J]. 现代制造工程, 2018(10): 88-93.
[14] 王海洋. 真空管道交通系统高速运行时的气动特性和能耗分析[D]. 长沙: 湖南大学, 2018.
[15] 关炎培. 真空管道磁悬浮列车永磁电动与电磁混合悬浮支承研究[D]. 武汉: 武汉理工大学, 2018.
[1] ZHANG Long-he. Analysis and Treatment of Common Faults of Oil Sealed Rotary Vacuum Pump [J]. VACUUM, 2021, 58(3): 17-22.
[2] LIU Meng, WU Jian-long, ZHAO Teng, ZHU Lang-tao, CAO Hai-ling, ZHANG Ming, MA Zheng-feng, ZHANG Mi, FU Deng-feng. Research and Application of Remote Fault Diagnosis System for Mechanical Vacuum Pump [J]. VACUUM, 2021, 58(2): 48-51.
[3] ZHANG Shi-wei, SUN Kun, HAN Feng. Discussion on Several Common Problems in Screw Vacuum Pump Design [J]. VACUUM, 2021, 58(1): 23-28.
[4] SUN Ke-gang, MA Zheng-bin, GUO Xi-kun, SUN Hao-ran. Development and Application of Vacuum System and Vacuum Chuck for Large Tonnage Vacuum Pipe Lifter [J]. VACUUM, 2020, 57(6): 75-79.
[5] XU Fa-jian, HUANG Zhi-ting, LIU Bao-xin. Design Method and Engineering Application of Liquid Ring Compression System Based on Thermodynamics Theory [J]. VACUUM, 2020, 57(5): 79-84.
[6] ZHAO Teng, ZHANG Hu, LIU Xiang, WU Jian-long, ZHANG Mi, ZHOU Rong-ping. Leak Rate Test and Intelligent Detection of Mechanical Vacuum Pump System for RH Refining Furnace [J]. VACUUM, 2020, 57(4): 28-31.
[7] ZHAI Yun-fei, ZHANG Shi-wei, SUN Kun, ZHAO Fan, ZHANG Zhi-jun, HAN Jin, ZHANG Li, ZHANG Yong-ju. Analytical Calculation, Experimental Studies on Gas Thermodynamic Processes in Screw Vacuum Pump [J]. VACUUM, 2020, 57(3): 54-60.
[8] JIANG Xie-chang. Vacuum Pumps for Chemical Process Industries [J]. VACUUM, 2020, 57(2): 1-7.
[9] HUANG Nian-zhi, WU Yue, WU Fei, LI Qiong, ZHANG Li-na. Study on Calibration Method of Pressure Pipeline during Pressure Simulation Test [J]. VACUUM, 2020, 57(1): 51-55.
[10] CHEN Hai-feng, LIN Le-zhong. Design of Chamber C1 for Low-E Glass Coating Line [J]. VACUUM, 2019, 56(5): 47-51.
[11] LV Na, YU Sheng-bin, YAN Hong-yu, YU Qing-ming, QIAO Bao-zhen, WANG Ying-wu. Application of a New Type of Pressure Alternating Vacuum Drying Technology for Transformer Treatment [J]. VACUUM, 2019, 56(4): 74-77.
[12] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[13] ZHAI Yun-fei, ZHANG Shi-wei, HAN Feng, ZHAO Fan, XIE Yuan-hua. Thermodynamic calculation for pumping process in the trilobal Roots vacuum pump [J]. VACUUM, 2019, 56(3): 10-15.
[14] JIANG Xie-chang. Vacuum system fault diagnosing and troubleshooting [J]. VACUUM, 2019, 56(3): 1-5.
[15] WANG Fei, JING Jia-rong, LI Can-lun, QI Xiao-jun. Development of vacuum thermal environment test system for deep space detector [J]. VACUUM, 2019, 56(3): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!