欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 55-61.doi: 10.13385/j.cnki.vacuum.2023.03.09

• Measurement and Control • Previous Articles     Next Articles

The Vacuum Leakage Solution of CSNS DTL

LIU Shun-ming1,2, WANG Peng-cheng1,2, LIU Jia-ming1,2, TAN Biao1,2, SUN Xiao-yang1,2, WANG Yi-gang1,2, ZHU Bang-le1,2, SONG Hong1,2, LI Bo1,2, WU Xiao-lei1,2, LI A-hong1,2   

  1. 1. Spallation Neutron Source Science Center, Dongguan 523808, China;
    2. Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China
  • Received:2022-11-07 Online:2023-05-25 Published:2023-05-30

Abstract: The drift tube linac(DTL) is the main part of CSNS linac, which is responsible for accelerating the negative hydrogen ion beam with a pulse current of 15mA from 3MeV to 80MeV, and then injecting it into the fast cycle synchrotron(RCS) for further acceleration. In order to avoid energy loss, ion beam acceleration must be completed in a high vacuum environment.This paper first introduces the composition of the DTL tank vacuum system, and then analyzes the current vacuum leakage, describes in detail the vacuum leakage solutions in different situations such as pickup leakage, drift tube leakage(including water leakage, air leakage, internal leakage), and reduces the leak detection area by simulation calculation by Monte Carlo method. Due to the high leakage frequency of drift tubes, this paper gives a standardized operating procedure for drift tube leakage to improve leak detection efficiency.

Key words: DTL tank vacuum system, vacuum leakage, Monte Carlo method, leak detection efficiency

CLC Number:  TL53

[1] 韦杰. 中国散裂中子源简介[J]. 现代物理知识, 2007, 19(6):22-29.
[2] 陈和生. 中国散裂中子源[J]. 现代物理知识, 2016, 28(1):3-10.
[3] FU S N, CHEN H S, CHEN Y B, et al.CSNS project construction[J]. Journal of Physics: Conference Series, 2018, 1021(1): 012002.
[4] DONG H, SONG H, LI Q, et al.The vacuum system of the China spallation neutron source[J]. Vacuum, 2018, 154: 75-81.
[5] 刘华昌, 彭军, 巩克云, 等. 中国散裂中子源漂移管直线加速器研制进展[J]. 原子能科学技术, 2015(增刊2): 556-559.
[6] 刘华昌, 李阿红, 彭军, 等. 漂移管直线加速器加速电场分布及稳定性调谐研究[J]. 原子能科学技术, 2017, 51(10): 1874-1879.
[7] 刘顺明, 关玉慧, 黄涛, 等. CSNS直线加速器真空系统及四极质谱检漏[J]. 真空与低温, 2019, 25(5): 348-354.
[8] 王凡, 陈光奇, 王荣宗. 航天产品常用泄漏检测方法[J]. 真空与低温, 2012, 18(4): 235-240.
[9] DWIVEDI J, KUMAR A, SONI H C, et al.Restoration of RF cavity for synchrotron storage ring INDUS-1[C]//Asian Particle Accelerator Conference. Proceedings of APAC 2004. Gyeongju, Korea, 2004.
[10] 胡俊峰. 西门子直线加速器一起因内循环水泄漏引起高压打火故障的检修[J]. 医疗装备, 1999(2): 40-41.
[11] ROMANOV G, AWIDA M H, CHEN M Y, et al.CW room temperature RE-buncher for the porject X front end[C]//3rd International Particle Accelerator Conference. New Orleans, Louisiana: IPAC, 2012.
[12] KATONAKD, BERNARDINJ, HOPKINSS. Water purity development for the coupled cavity linac(CCL) and drift tube linac(DTL) structures of the Spallation Neutron Source(SNS) linac[C]//2001 Particle Accelerator Conference. Chicago: IEEE, 2001.
[13] 刘顺明, 王鹏程, 宋洪, 等. CSNS漂移管泄漏检测[J]. 真空与低温, 2022, 28(6): 694-698.
[14] 窦仁超, 陈长琦, 胡建生, 等. 四极质谱计在超导托卡马克装置上的应用[J]. 真空科学与技术学报, 2016, 36(12): 1394-1399.
[15] 刘顺明, 宋洪, 董海义, 等. 四极质谱在漂移管直线加速器上的应用[J]. 真空, 2018, 55(6): 5-9.
[16] KERSEVAN R.Analytical and numerical tools for vacuum systems[R]. Platja D′Aro, Spain: CERN Accelerator School(CAS), 2006,(3): 285
[17] 郎嘉琪, 谢远来, 胡纯栋, 等. 中性束注入器真空系统差分抽气性能优化研究[J]. 真空科学与技术学报, 2020, 40(2): 113-118.
[18] 王欲知, 陈旭.真空技术[M]. 2版. 北京: 北京航空航天大学出版社, 2007: 228-233.
[19] 达道安. 真空设计手册[M]. 3版. 北京: 国防工业出版社, 2004: 769-773.
[1] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[2] CUI Yu-hao, DOU Ren-chao, SHI Li-xia, LIU Xing-yue. Influence of Ionization Gauge Position on Measurements [J]. VACUUM, 2020, 57(5): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .