欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 62-66.doi: 10.13385/j.cnki.vacuum.2023.03.10

• Measurement and Control • Previous Articles     Next Articles

Physical Design of High Performance Electron Gun

SHI Xiao-qian, LIU Jia-hui, CHEN Xue-ying, GUO Fang-zhun   

  1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China
  • Received:2022-08-31 Online:2023-05-25 Published:2023-05-30

Abstract: The measurement of secondary electron emission coefficient is very important for the development of vacuum electronic devices. To measure the secondary electron emission coefficient of materials with low electrical conductivity, it is necessary to design a high performance electron gun with adjustable energy, beam spot diameter, deflection and pulse. According to the performance index of the electron gun, its electron emission, electron optical system and potential relationship are preliminarily designed. The pulse emission of electron beam was realized by applying pulse voltage to the control pole. The CST software was used to model and simulate the electron gun, the influence of focusing pole voltage on the beam spot size was obtained, and the effect of the deflector electrode was simulated. The results show that when the cathode voltage is -1000V, the control electrode voltage is -1005V, and the first anode voltage is -880V, as the focusing voltage increases from -400V to 1000V, the beam spot diameter increases from 0.2mm to 10mm, the relationship between them is almost directly proportional. The quadrupole electrostatic deflector is more suitable for use in the same space by comparing two deflection components. When the working distance is 30mm and the deflection voltage is 200V, the deflection sensitivity can reach 34mm/kV and the corresponding deflection angle is 12.8°. The design of the electron gun is reasonable and meets the requirements of the index, it can be used to measure the secondary electron launcher.

Key words: electron gun, electron optical system, CST simulation, secondary electron

CLC Number:  TL82

[1] 王芳, 黎东杰, 翁明, 等. 电子辐照介质材料二次电子发射系数与能谱测量数据库[J]. 真空科学与技术学报, 2021, 41(12): 1142-1156.
[2] SEILER H.Secondary-electron emission in the scanning electron-microscope[J]. Journal of Applied Physics, 1983, 54(11): 1-18.
[3] DUNAEVSKY A, RAITSES Y, FISCH N J.Secondary electron emission from dielectric materials of a hall thruster with segmented electrodes[J]. Physics of Plasmas, 2003, 10(6): 2574-2577.
[4] BELLISSIMO A, PIERANTOZZI G M, RUOCCO A, et al.Secondary electron generation mechanisms in carbon allotropes at low impact electron energies[J]. Journal of Electron Spectroscopy and Related Phenomena, 2020, 241: 146883.
[5] 李杨威, 任成燕, 孔飞, 等. 绝缘材料二次电子发射系数的测量及其影响因素研究进展[J]. 高压电器, 2019, 55(5): 1-9.
[6] CAZAUX J.Some considerations on the secondary electron emission, δ, from e-irradiated insulators[J]. Journal of Applied Physics, 1999, 85(2): 1137-1147.
[7] 薛冬冬, 孙秀宇, 游燕, 等. 低能量电子枪的研发[J]. 真空电子技术, 2016(1): 34-37.
[8] 林朔. 用于动量谱仪的低能脉冲电子束系统搭建与调试[D]. 上海: 复旦大学, 2011.
[9] 薛颖莹. 氧化镁二次电子发射体测试方法研究[D]. 杭州: 浙江大学, 2015.
[10] 李红林. 二次电子发射系数测控系统软硬件设计[D]. 成都: 电子科技大学, 2017.
[11] 苗光辉, 崔万照, 杨晶, 等. 二次电子发射特性测量装置的研究与进展[J]. 空间电子技术, 2018, 15(1): 25-32.
[12] 金雪莲, 吴雪梅, 诸葛兰剑, 等. 抑制二次电子发射方法的研究[J]. 材料导报, 2021, 35(7): 7176-7182.
[13] JIN X L, WU X M, ZHU G J, et al.Study on the method of suppressing secondary electron emission[J]. Materials Review, 2021, 35(7): 7176-7182.
[14] CHEN Y, HUANG G, YANG Y, et al.Development of a measurement system for the secondary electron emission yield spectrum of space materials[C]//2020 International Conference on Sensing,Measurement & Data Analytics in the Ara of Artificial Intelligence(ICSMD).Xi′an: IEEE, 2020.
[15] 林祖伦, 王小菊. 阴极电子学[M]. 北京: 国防工业出版社, 2013: 1-2.
[16] 华中一, 顾昌鑫. 电子光学[M]. 上海: 复旦大学出版社, 1991: 222-223.
[17] 康轶凡, 冯大毅, 周利斌, 等. 一种新型的变像管用复合聚焦-偏转系统[J]. 强激光与粒子束, 2009, 21(7): 993-997.
[18] HOSEINZADE M, NIJATIE A, SADIGHZADEH A, et al.Numerical simulation and design of a thermionic electron gun[J]. Chinese Physics C, 2016, 40(5): 94-100.
[19] 朱美强, 石晓倩, 唐瓦, 等. 高能量大束流氩离子枪的研发[J]. 核技术, 2021, 44(9): 39-44.
[20] 邱宇帆,李胜波,郑新建,等. 多参数耦合下电子枪静电聚焦特性分析[J].真空科学与技术学报, 2021, 41(11): 1094-1100.
[1] SHI Xiao-qian, LIU Jia-hui, CHEN Xue-ying, GUO Fang-zhun. Study on Electron Optical System of Scanning Ar Ion Gun [J]. VACUUM, 2023, 60(1): 71-75.
[2] FANG You-wei, LIU Lin, YU Shi-ji, LI Yu-tao. Study on Electronic Emission of Mo, Hf Grid Material [J]. VACUUM, 2022, 59(6): 60-64.
[3] WANG Bo-feng, HU Xu-hua, ZHOU Guan-Li, LI Hong-yu, ZHOU Jian-yong, WANG Xiao-xia, ZHANG Zhao-chuan. Design on vaccum degassing system of electron gun for microwave tubes [J]. VACUUM, 2019, 56(1): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .