欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (6): 1-7.doi: 10.13385/j.cnki.vacuum.2021.06.01

• Measurement and Control •     Next Articles

Influence of the Position of Molecular Pump Medium Detection Port on the Performance of Helium Mass Spectrometer Leak Detector

LI Bo1, HOU De-feng2, WANG Xiao-dong1, BA De-chun1   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
    2. Automotive Engineering Corporation, Tianjin 300110, China
  • Received:2021-01-22 Online:2021-11-25 Published:2021-11-30

Abstract: In the helium mass spectrometry leak detection technology, the multi-port composite molecular pump can meet different leak detection requirements by connecting to different air extraction ports, which broadens the application scope of traditional molecular pump. The location of the gas extraction port affects the pumping capacity of the molecular pump, which determines the performance of the leak detector. Based on the basic theory of molecular pump pumping, the calculation model of multi-port compound molecular pump is established. The pumping ports of medium check valve are set at different positions in the drag stage of molecular pump. The pumping characteristics are studied by combining with the actual use of mass spectrometer, and the influence of medium check position on helium leakage is analyzed. The optimal opening position under different leak detection conditions is obtained, which provides a theoretical basis for the structural optimization design of multi port composite molecular pump for leak detection. The results show that, when the medium detection port is set at the height between 15mm and 20mm, it can not only obtain better detection performance, but also ensure the allowable pressure of mass spectrometry chamber, and has a wide working pressure range.

Key words: multi-port compound molecular pump, medium detection valve, port position, drag stage, helium mass spectrometry leak detection

CLC Number: 

  • TB752
[1] 赵伟, 王金龙, 汪兆军, 等. 乏燃料水池转运舱氦质谱检漏技术的应用[J]. 无损检测, 2020, 42(4): 10-14.
[2] 孙京生, 王梓越. 氦质谱检漏技术在火电机组真空系统中的应用[J]. 资源节约与环保, 2019(12): 105-106.
[3] 孟丽红, 舒立杰, 魏智才, 等. 一种用于核工业的氦质谱检漏装置控制系统[J]. 真空科学与技术学报, 2018, 38(11): 930-937.
[4] 张汉君, 华道柱, 谢远术, 等. 差分真空单颗粒进样在线气溶胶飞行时间质谱系统的研制[J]. 电子测量与仪器学报, 2018, 32(10): 9-14.
[5] 巴德纯, 王晓冬, 刘坤, 等. 现代涡轮分子泵的进展[J]. 真空, 2010, 47(4): 1-6.
[6] 杨乃恒. 现代涡轮分子泵的技术现状与展望[J]. 真空, 1996(2): 1-7.
[7] HENNING J.Thirty years of turbo-molecular pumps: A review and recent developments[J]. Journal of Vacuum Science & Technology A, 1988(6): 1196-1201.
[8] 杨乃恒. 真空获得设备(第2版)[M]. 北京: 冶金工业出版社, 2001: 113-140.
[9] 濮荣强, 黄文平. 氦质谱检漏技术的研究与实践[J]. 宇航计测技术, 2012, 32(6): 22-24.
[10] 黄文平, 朱长平. 提高氦质谱检漏仪检漏压力的研究[J]. 中国仪器仪表, 2016(8): 52-55.
[11] CHENG H P, CHIANG M T.Pumping performance investigation of a turbo booster vacuum pump equipped with spiral-grooved rotor and inner housing by the computational fluids dynamics method[J]. J.Vac.Sci.Technol, Jul/Aug, 2003, A21(4): 1458-1463.
[12] TSUI Y Y, KUNG C P, CHENG H P. Modeling of the slip flow in the spiral grooves of a molecular pump[J]. Vac.Sci.Technol, 2001, A(19): 2785-2790.
[13] 于鲁光. 新型复合式分子泵的结构与性能研究[D]. 沈阳: 东北大学, 1996.
[14] 王晓冬, 张磊, 巴德纯, 等. 复合分子泵牵引级螺旋槽深对压缩比的影响[J]. 东北大学学报(自然科学版), 2016, 37(10): 1437-1440.
[15] 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2014.
[16] 储继国. 拖动分子泵的抽速[J]. 真空电子技术, 1998(4): 8-13.
[17] BHATTI J, AIJAZI M, KHAN A.Design characteristics of molecular drag pumps[J]. Vacuum, 2001, 60: 213-219.
[18] 刘玉岱. 真空测量与检漏[M]. 北京: 冶金工业出版社, 1992.
[19] 王成智, 罗淑绒, 梁静陶. ZHP-30型氦质谱检漏仪的设计性能和特点[J]. 真空, 1996(6): 13-18.
[20] 周萍. 氦质谱检漏仪的研制[D]. 成都: 电子科技大学, 2007.
[1] QI Da-wei, LI Wei-hua, LI Chuan-xu, WU Bin, CHEN De-jiang, TANG Zhi-gong. Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel [J]. VACUUM, 2021, 58(4): 49-53.
[2] ZHANG Long-he. Analysis and Treatment of Common Faults of Oil Sealed Rotary Vacuum Pump [J]. VACUUM, 2021, 58(3): 17-22.
[3] XU Hui-qiang, ZONG Cheng, WANG Yanqing, XU Heng, CHEN Yu-xiang. Calculation Method and Analysis on Thermal Compressor Ejection Characteristics [J]. VACUUM, 2021, 58(2): 52-57.
[4] ZHANG Shi-wei, SUN Kun, HAN Feng. Discussion on Several Common Problems in Screw Vacuum Pump Design [J]. VACUUM, 2021, 58(1): 23-28.
[5] YANG Nai-heng. Analysis and Discussion on the Vacuum Pump for Vacuum Degassing [J]. VACUUM, 2021, 58(1): 29-32.
[6] SUN Lu-yao, CHEN Guang-qi. Experimental Study on Adsorption Isotherms of Activated Carbon at Low Temperature and Pressure [J]. VACUUM, 2020, 57(6): 69-74.
[7] SUN Ke-gang, MA Zheng-bin, GUO Xi-kun, SUN Hao-ran. Development and Application of Vacuum System and Vacuum Chuck for Large Tonnage Vacuum Pipe Lifter [J]. VACUUM, 2020, 57(6): 75-79.
[8] NING Yuan-tao, JING Jia-rong, ZHANG Yan-shun, HUANG Tao, CHEN Qi. Optimization and Evaluation of Compound Molecular Pump Based on DFMA [J]. VACUUM, 2020, 57(4): 41-45.
[9] ZHAO Chang-lian, MAO Shi-feng, LIU Peng, QIN Shi-jun, YU Yi, YE Min-you. DSMC Simulation Study of Influence of Nozzle Angle on Pumping Performance of Mercury Diffusion Pump [J]. VACUUM, 2020, 57(2): 8-12.
[10] ZENG Huan, DENG Jia-liang, SUN Zhi-he. Design of the 250mm Caliber Cryopump [J]. VACUUM, 2020, 57(2): 13-16.
[11] JIANG Xie-chang. Vacuum Pumps for Chemical Process Industries [J]. VACUUM, 2020, 57(2): 1-7.
[12] ZHAI Yun-fei, ZHANG Shi-wei, HAN Feng, ZHAO Fan, XIE Yuan-hua. Thermodynamic calculation for pumping process in the trilobal Roots vacuum pump [J]. VACUUM, 2019, 56(3): 10-15.
[13] YANG Hua-fei, YIN Shan-shan, LUO Gen-song, LIANG Yi-heng. Research and exploration on energy saving technology of mechanical vacuum pump [J]. VACUUM, 2019, 56(2): 37-40.
[14] Alessandro Abatecola. A new high-conductance ion pump for particle accelerator [J]. VACUUM, 2019, 56(1): 16-19.
[15] ZHAO Yue-shuai, SUN Li-chen, SHAO Rong-ping, YAN Rong-xin, SUN Wei, LI Zheng. Design and performance test of DN1250 LN2 refrigerator cooled cryopumps [J]. VACUUM, 2019, 56(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!