欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 63-67.doi: 10.13385/j.cnki.vacuum.2022.03.13

• Measurement and Control • Previous Articles     Next Articles

An Application of Ultrasensitive Leak Detection Technology Integrated in High Pumping Speed Automatic Exhaust Table

TIAN Ming-li1, QIU Li1, DONG Yun-ning2,3, CHEN Jun-ru2,3, CHEN You-qi2,3, TANG Rong4, ZHANG Ji-feng4   

  1. 1. The 12th Research Institute of China Electronics Technology Group Corporation, Beijing 100016, China;
    2. Beijing Orient Institute of Measurement and Test, Beijing 100086, China;
    3. Beijing Engineering Research Center of Vacuum Measurement and Test, Beijing 100029, China;
    4. Beijing Vacuum Electronic Technology Co., Ltd., Beijing 100016, China
  • Received:2022-04-26 Online:2022-05-25 Published:2022-06-01

Abstract: An ultrasensitive leak detection technology applied to high pumping speed automatic exhaust system is designed to solve the problem of small leak detection with leakage rate less than 5×10-12Pa·m3/s in the process of exhaust and sealing off for traveling wave tube. The device is mainly composed of main vacuum system, external vacuum and baking system, cumulative comparison leak detection system, standard gas flow system and electrical control system. The exhaust table has eight stations, whose limit vacuum reaches ultra-high vacuum without load, and the vacuum furnace can be heated to high temperature. The whole process automation of exhaust process is achieved using program control and possessing functions of automatic collection, storage, analysis and transmission. The standard gas flow system can provide a micro flow from 5×10-7Pa·m3/s to 5×10-16Pa·m3/s, and the lower limit of cumulative comparison leak detection system reaches 5×10-16Pa·m3/s, with a combined standard uncertainty of leak detection results less than 15%.

Key words: traveling wave tube, ultra-sensitive leak detection, micro gas flow, uncertainty

CLC Number: 

  • TB79
[1] 廖复疆. 大功率微波电子注器件及其发展[J]. 真空电子技术, 1999(1): 3-9.
[2] 廖复疆. 大功率微波真空电子器件的发展及应用[J]. 真空电子技术, 1992(1): 1-10.
[3] NICOL E F, ROBISON J M.Twta on-orbit reliability for satellite industry[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 1-5.
[4] PAOLONI C, GAMZINA D, LETIZIA R, et al.Millimeter wave traveling wave tubes for the 21st century[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(5): 567-603.
[5] 《电子工业生产技术手册》编委会.电子工业生产技术手册4: 电真空器件卷[M]. 北京: 国防工业出版社, 1990.
[6] 翟建国, 周碎明, 魏义学, 等. 行波管内真空度测量研究[J]. 真空电子技术, 2021(5): 80-83.
[7] 陈旭, 王立功, 查良镇. 超高真空排气过程中进行实时超灵敏度检漏[C]//中国真空学会质谱与检漏专委会第十二届年会、中国计量测试学会真空校准专委会第七届年会论文摘要集. 贵阳: 中国真空学会, 2004: 45.
[8] 陈娉, 陈旭, 金奇计, 等. 超灵敏度检漏和校准系统[C]//中国真空学会质谱与检漏专委会第十一届年会、中国计量测试学会真空校准专委会第六届年会论文摘要集. 桂林: 中国真空学会, 2002: 96.
[9] 肖立波, 陈旭, 陈聘, 等. 超灵敏度检漏系统及其校准[C]//中国真空学会质谱与检漏专委会第十二届年会、中国计量测试学会真空校准专委会第七届年会论文摘要集. 贵阳: 中国真空学会, 2004: 54.
[10] 卢耀文, 李得天, 齐京, 等. 一种下限为5×10-16Pa·m3/s的高精度超灵敏度检漏装置[J]. 真空科学与技术学报, 2019, 39(1): 1-5.
[11] LU Y W, DONG Y N, CHEN A Q, et al.Ultra-high vacuum leak detection technology with the lower limit of 10-16Pa·m3/s for nano devices[C]//2017 30th International Vacuum Nano-electronics Conference(IVNC). Regensburg: IEEE, 2017.
[12] 冯天佑, 成永军, 陈联, 等. 基于选择性抽气原理的超灵敏检漏方法分析[J]. 真空与低温, 2020, 26(2): 120-124.
[13] 卢耀文, 董云宁, 杨传森, 等. 一种(10-5-10-16)Pa·m3/s标准气体流量计的设计[J]. 真空科学与技术学报, 2021, 41(5): 420-424.
[14] LI D T, CHENG Y J, FENG Y, et al.Very low gas flow measurements for UHV/XHV and leak calibration[J]. Metrologia, 2013, 50: 15-19
[15] 米伦, 李晓勇, 王远, 等. 程控无油超高真空排气台的研制[J]. 真空与低温, 2005(3): 170-174.
[16] 边悦, 刘春艳. 特大型超高真空排气台的研制[J]. 真空科学与技术学报, 2019, 39(12): 1079-1082.
[17] 米伦, 史愚砾, 石磊. 电真空器件程控排气的研究[J]. 真空, 2003(2): 54-56.
[18] 李得天, 郭美如, 葛敏, 等. 固定流导法真空漏孔校准装置[J]. 真空科学与技术学报, 2006(5): 358-362.
[19] 卢耀文, 陈旭, 李得天, 等. 便携式真空漏孔校准装置[J]. 真空科学与技术学报, 2013, 33(12): 1179-1183.
[20] 李宏宇, 张静, 彭光东, 等. 航天器推进系统漏率测试不确定度评定[J]. 真空科学与技术学报, 2020, 40(7): 625-629.
[21] 倪育才. 实用测量不确定度评定: 第2版[M]. 北京: 中国计量出版社, 2008.
[1] LIU Xing-sheng, XIE Yong-rong, ZHENG Ying, FEI Wei-nan. A relative method for calibrating vacuum leak and uncertainty assessment [J]. VACUUM, 2019, 56(2): 66-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .