VACUUM ›› 2024, Vol. 61 ›› Issue (1): 21-26.doi: 10.13385/j.cnki.vacuum.2024.01.03
• Thin Film • Previous Articles Next Articles
LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, ZHANG Xiao, HAN Yan, LIU Chu-yan, SUN Li-chen, YAN Rong-xin
CLC Number: TB774
[1] | 师立侠, 王凯, 汪力, 等. 面向探月工程应用的几种新型工质检漏技术[J]. 航天器环境工程, 2020, 27(3):310-314. |
[2] | CHU H M, SASAKI T, HANE K.Design, fabrication, and vacuum package process for high performance of 2D scanning MEMS micromirror[C]//16th International IEEE Solid-State Sensors Actuators and Microsystems Conference. Beijing, China: IEEE, 2011: 558-561. |
[3] | JAU Y Y, PARTNER H, SEHWINDT P D, et al.Low-power, miniature 171 Yb ion clock using an ultra-small vacuum package[J]. Applied Physics Letters, 2012, 101(25):253518. |
[4] | FISETTE B, CHEVALIER C, LEPINE A, et al. Design and fabrication of a scalable high-reliability vacuum sealed package for infrared detectors[C]//4th Electronic System-Integration Technology Conference. Amsterdam, Netherlands: IEEE, 2012: l-6. |
[5] | 肖力波, 陈旭, 黄天斌, 等. 超灵敏检漏的实时校准[J]. 真空科学与技术学报, 2006, 26(1): 54-56. |
[6] | 达道安. 真空设计手册[M]. 3版. 北京:国防工业出版社, 2004: 1318. |
[7] | CHAN C K, YEH S D, CHANG C C, et al.A flange-type standard leak element and its vacuum applications[J]. Vacuum, 2021, 184: 109945. |
[8] | CHAN C K, TU C Y, YEH S D, et al.A gasket-type standard leak element using femtosecond laser micromachining[J]. Vacuum, 2020, 180: 109650. |
[9] | ZHOU W T, BI H L, YU Z H, et al.Fabrication of the nanofluidic channels type leak assembly based on the glass frit sealing method[J]. Journal of Vacuum Science & Technology B, 2019, 37(5): 050603. |
[10] | IERARDI V, BECKER U, PANTAZIS S, et al.Nano-holes as standard leak elements[J]. Measurement, 2014, 58: 335-341. |
[11] | ZHU A Q, ZHAO Y H, WANG X D, et al.New leak assembly based on fluidic nanochannels[J]. Journal of Vacuum Science & Technology A, 2016, 34(5): 050604. |
[12] | ZHAO Y H, CHENG Y J, ZHANG Q, et al.New leak element using anodic aluminum oxide[J]. Vacuum, 2016, 131: 111-114. |
[13] | LEE C, WEI X D, KYSAR W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
[14] | CHEN Y, ZOU J, CAMPBELL S J, et al.Boron nitride nanotubes: pronounced resistance to oxidation[J]. Applied Physics Letters, 2004, 84(13): 2430-2432. |
[15] | BUNCH J S, VERBRIDGE S S, ALDEN J S, et al.Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462. |
[16] | LEENAERTS O, PARTOENS B, PEETERS F M.Graphene: a perfect nanoballoon[J]. Applied Physics Letters, 2008, 93(19):193107. |
[17] | LI X S, CAI W W, AN J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J] Science, 2009, 324(5932): 1312-1314. |
[18] | LEE W C, BONDAZ L, HUANG S, et al.Centimeter-scale gas-sieving nanoporous single-layer graphene membrane[J] Journal of Membrane Science, 2021, 618: 118745. |
[19] | BOUTILIER M S, SUN C, O'HERN S, et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation[J]. ACS Nano, 2014, 8(1): 841-849. |
[20] | WANG L, DRAHUSHUK L W, CANTLEY L, et al.Molecular valves for controlling gas phase transport made from discrete angstrom-sized pores in graphene[J]. Nature Nanotechnology, 2015, 10(9): 785-790. |
[21] | ZHANG Y, ZHANG L Y, ZHOU C W.Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339. |
[22] | LOCK E H, BARAKET M, LASKOSKI M, et al.High-quality uniform dry transfer of graphene to polymers[J]. Nano letters, 2014, 12(1): 102-107. |
[23] | CANCADO L G, JORIO A, FERREIRA E, et al.Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011,11(8): 3190-3196. |
[24] | FERRARI A C, MEYER J C, SCARDACI V, et al.Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401. |
[1] | HUANG Guang-hong, LI Di, LI Na, ZHEN Zhen, WANG Xin, XU Zhen-hua. Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process [J]. VACUUM, 2024, 61(1): 34-40. |
[2] | FANG Jiu-kang, DONG Shu-hong. Peeling Behaviors of Graphene Film by Molecular Dynamics Simulations [J]. VACUUM, 2023, 60(5): 60-65. |
[3] | ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun. Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes [J]. VACUUM, 2022, 59(1): 48-53. |
[4] | ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14. |
[5] | GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33. |
[6] | RAN Biao, LIU Fei, YU Xiang. In-situ Growth of Graphene on Cemented Carbide through Amorphous SiC [J]. VACUUM, 2019, 56(4): 24-30. |
|