欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (5): 77-85.doi: 10.13385/j.cnki.vacuum.2025.05.15

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Intrinsic Equation and Quenching Organisation of a Mn-Containing Secondary Hardening Ultra-High Strength Steel

JIANG Wen   

  1. Department of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China
  • Received:2025-04-01 Published:2025-09-29

Abstract: The Mn-containing secondary hardening ultra-high strength steel was prepared by vacuum induction melting. Hot compression experiments were conducted at temperatures of 1 000, 1 050, and 1 100 ℃ with strain rates of 0.01, 0.05, and 0.1 s-¹, respectively. A strain-compensated constitutive equation was established based on true stress-true strain data using the strain compensation method. The prior austenite was reconstructed to investigate the effect of hot deformation parameters on quenched microstructures. The results indicate that the flow stress decreases with increasing deformation temperature, while increases with rising strain rate. The as-established strain-compensated Arrhenius constitutive model can effectively predict flow stress, with a correlation coefficient of 0.999 8 and an average relative error of 1.868 6%. The quenched martensite combinations under different deformation conditions exhibit better consistency with CPP combination characteristics. As the deformation temperature increases and strain rate decreases, the proportion of high-angle grain boundaries increases, and the average grain size of prior austenite enlarges.

Key words: secondary hardening steel, hot deformation behavior, constitutive equation, matensite variant, vacuum induction melting

CLC Number:  TG142

[1] 吴迪. 钨钼复合二次硬化超高强度钢析出相及热变形行为研究[D]. 河北:燕山大学,2016.
[2] 冯永. 回火工艺对AerMet100超高强钢组织与力学性能的影响[J]. 热加工工艺,2020,49(22):147-149.
[3] 厉勇, 王春旭, 田志凌, 等. 一种复合强化高韧性超高强度二次硬化钢:CN200810226528.5[P].2011-09-21.
[4] 刘贵立,张国英. 高Co-Ni二次硬化钢力学性能研究[J]. 材料科学与工程,2000,18(1):47-49.
[5] 李建凯. 2100 MPa高韧性二次硬化型超高强度钢组织与性能的研究[D]. 西安:西安建筑科技大学,2015.
[6] 刘贵立,张国英,曾梅光,等. Co、Al对二次硬化钢微结构影响的穆谱研究[J]. 机械工程学报,2002,38(12):149-152.
[7] JI G L, LI F G, LI Q H, et al.Research on the dynamic recrystallization kinetics of Aermet100 steel[J]. Materials Science and Engineering: A, 2010, 527(9): 2350-2355.
[8] 丁文圆,宋庆华,赵飞,等. CLAM钢的热变形行为及热加工图[J]. 原子能科学技术,2018,52(6):1077-1084.
[9] 刘修萍,杨素媛,李先雨,等. M54超强钢的热变形行为及显微组织研究[J]. 兵器材料科学与工程,2023,46(2):1-6.
[10] 郝世明,谢敬佩. 30%SiCp/2024A1复合材料的热变形行为及加工图[J]. 粉末冶金材料科学与工程,2014(1):1-7.
[11] MAO X D, GU N J, HUANG D N, et al.Hot deformation behaviors and hot processing maps of AlSi37Cu0.7Mg0.9Ni0.2 aluminum alloy prepared by rapid solidification and hot pressure[J]. Journal of Materials Research and Technology, 2025, 35: 6485-6496.
[12] ZHOU H P, RUAN A Q, ZHANG H B, et al.Hot deformation behavior and dynamic recrystallization mechanism of Cr-Co-Ni particle-reinforced AZ31 magnesium matrix composite[J]. Journal of Alloys and Compounds, 2025, 1022: 179923.
[13] XU X D, ZHANG P C, FANG J F, et al.The hot deformation behavior and processing map analysis of a high-nitrogen austenitic stainless steel[J]. Journal of Materials Research and Technology, 2024, 33: 1359-1365.
[14] ZHAO Y, ZHENG J, LIU Z, et al.Hot deformation behavior and hot processing map of 50CrVA spring steel[J]. Metals, 2024, 14(12): 1391.
[15] CAO R Z, WANG W, MA S B, et al.Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.
[16] 李玮,戴浩浩,阎泽文,等. Zener-Hollomon参数对AZ61镁合金热变形行为的影响[J]. 燕山大学学报,2021,45(4):328-334.
[17] 马少伟,张艳,杨明,等. Zener-Hollomon参数对Cr4Mo4Ni4V高合金钢热变形行为的影响[J]. 中南大学学报(自然科学版),2021,52(2):376-388.
[18] WANG Y T, LI J B, XIN Y C, et al.Effect of Zener-Hollomon parameter on hot deformation behavior of CoCrFeMnNiC0.5 high entropy alloy[J]. Materials Science and Engineering: A, 2019, 768: 138483.
[19] SAPUTRO I E, LIN C N, MARDIONO I, et al.ANN-enhanced determination and numerical model integration of activation energy and Zener-Hollomon parameter to evaluate microstructure evolution of AA6082 wheel forging[J]. Archives of Civil and Mechanical Engineering, 2024, 25: 9.
[20] WU B, LI J B, LIU L Z, et al.Effect of Zener-Hollomon parameter on high-temperature deformation behaviors of Mg-6Zn-1.5Y-0.5Ce-0.4Zr alloy[J]. Acta Metallurgica Sinica, 2021, 34(5): 606-616.
[21] 张一帆. A100钢热变形行为及变形机理的研究[D]. 沈阳:沈阳工业大学,2022.
[22] 蒋何苗, 李红英, 黄电源, 等. 油气井用26CrMo7S钢的热变形应变补偿型本构方程[J]. 中南大学学报(自然科学版), 2023, 54(10): 3865-3874.
[23] 孙建,李景辉,黄贞益,等. 一种低密度钢等温压缩时组织的演化和动态再结晶[J]. 材料研究学报,2024,38(10):768-781.
[24] 陈勇,文光奇,张晓明,等. 高锰TWlP钢热变形行为及应变补偿型本构方程的建立[J]. 东北大学学报(自然科学版), 2021,42(3):325-332.
[25] 田畅. 中锰钢的奥氏体调控与Cu析出行为研究[D]. 北京:北京科技大学,2022.
[26] 魏明刚,龚彬,闵武,等. 热变形对35CrMo钢淬火马氏体晶体学特征的影响[J]. 锻压技术,2022,47(8):249-254.
[27] TAKAYAMA N, MIYAMOTO G, FURUHARA T.Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel[J]. Acta Materialia, 2012, 60: 2387.
[28] 王申存,李志成,易丹青,等. 低温回火马氏体取向关系的电子背散射衍射研究[J]. 中南大学学报(自然科学版),2011,42: 2620-2627.
[29] CAYRON C.One-step model of the face-centred-cubic to body-cen-tred-cubic martensitic transformation[J]. Acta Crystallogr, 2013, 69A: 498
[30] 高野,任家宽,李志峰,等. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报,2022,36(1):21-28.
[31] MAO G J, CAO R, CAYRON C, et al.Microstructural evolution and mechanical property development with nickel addition in low-car-bon weld butt joints[J]. Journal of Materials Processing Technology, 2018, 262: 638
[1] MENG Tao, ZHENG Shihao, LIU Enze, TAN Zheng, NING Likui. Effect of Annealing Treatment on TCP Phase Precipitation in a Super Ferritic Stainless Steel Tube [J]. VACUUM, 2025, 62(3): 15-20.
[2] CHEN Ming, LI Xiangcai, ZHANG Xiaomin, HUANG Shuo, WANG Chong, HU Jun. Effect of P on the as Cast Microstructure and Mechanical Properties of Nickel Based Superalloy [J]. VACUUM, 2025, 62(2): 91-99.
[3] ZHANG Wan-fu, YE Chao, LI Qiang, LI Jun, WANG De-hong, LUO Jun-yi. Manufacturing Technology for Low O/N Content Ni-based Superalloy K417G [J]. VACUUM, 2023, 60(6): 66-70.
[4] ZHANG Feng-xiang, MA Guo-hong, WAN Xu-jie, MA Xiu-ping, WU Ke-han, ZHANG Hua-xia. Cause Analysis on the Surface Porosity in Superalloy Ingots During Vacuum Casting [J]. VACUUM, 2023, 60(4): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .