欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (4): 80-84.doi: 10.13385/j.cnki.vacuum.2023.04.15

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Cause Analysis on the Surface Porosity in Superalloy Ingots During Vacuum Casting

ZHANG Feng-xiang, MA Guo-hong, WAN Xu-jie, MA Xiu-ping, WU Ke-han, ZHANG Hua-xia   

  1. Superalloy Casting Division, Beijing Institute of Aeronautical Materials Co., Ltd., Beijing 100095, China
  • Received:2023-03-29 Online:2023-07-25 Published:2023-07-26

Abstract: The formation mechanism of air hole defects on the surface of superalloy ingots produced by vacuum induction melting process was studied through microstructure observation of the superalloy ingots and thermogravimetric analysis of the attachments in the ingot mold. The results show that during pouring, a small amount of rust(Fe2O3) attached to the inner wall of the ingot mold decomposes into Fe3O4 under the action of high temperature, during which gas outgassing occurs. The expansion of the generated gas at high temperature is the main reason for the formation of holes on surface of alloy ingot.

Key words: vacuum induction melting, superalloy ingot, surface quality, ingot mould, blowhole

CLC Number:  TG27

[1] 王会阳, 安云岐, 李程宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011(2): 482-486.
[2] 窦学铮, 蒋立武, 宋尽霞, 等. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 154-168.
[3] 陈娇, 罗桦, 贺戬, 等. 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成形工程, 2023, 15(1):156-169.
[4] 张健, 王莉, 谢光, 等. 镍基单晶高温合金的研发进展[J/OL]. 金属学报,2023. https://kns.cnki.net/kcms2/detail/21.1139.TG.20230615.1709.008.html.
[5] 张龙飞, 江亮, 周科朝, 等.航空发动机用单晶高温合金成分设计研究进展[J].中国有色金属学报, 2022, 32(3):630-644.
[6] 袁战伟, 常逢春, 马瑞, 等.增材制造镍基高温合金研究进展[J].材料导报, 2022, 36(3):200-208.
[7] 杨浩, 王方军, 李采, 等. 镍基高温合金的熔炼工艺研究进展[J/OL]. 特殊钢, 2023. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD64odhuX7iC1V2wu8B_gX8iF0COC1W9b_Pu3LPjdef4hq4bt-0kizQUe&uniplatform=NZKPT.
[8] 李闯. 镍基单晶高温合金元素相互作用的研究进展[J].陕西理工大学学报:自然科学版, 2022,38(5):1-5.
[9] 唐中杰,郭铁明,寇生中,等. 镍基高温合金K4169中夹杂物的特征及形成机理[J]. 中国有色金属学报,2015,25(9):2403-2413.
[10] 赵会彬,周同金,冯微. K403镍基高温合金圆形平板铸件热裂倾向分析及解决措施[J]. 铸造,2017,66(6):554-558.
[11] 刘录凯,王林珠,冉佳乐. 镍基高温合金中夹杂物的研究现状及进展[J]. 山东化工,2021,50(17):90-92.
[12] 杨瑞宁,刘静波,刘昌奎,等.定向铸造镍基高温合金Hf 夹杂的特征及成因[J/OL].材料工程,2023.https://kns.cnki.net/kcms2/detail/11.1800.TB.20230609.1331.004.html.
[13] 王树森, 舒德龙, 王振江,等. 大尺寸K465镍基高温合金母合金铸锭表面缺陷形成机理[J]. 铸造,2021,70(5):547-553.
[14] CAO S T, YANG Y Q, CHEN B, et al.Influence of yttrium on purification and carbide precipitation of superalloy K4169[J]. Journal of Materials Science and Technology, 2021, 86:260-270.
[15] YOU X G, DONG G Y, ZHOU H J, et al.Removal of oxygen, nitrogen, and inclusions in powder superalloy scraps by electron beam smelting and induced solidification and the purification mechanisms[J]. Separation and Purification Technology, 2023, 304: 122290.
[16] BIAN W D, ZHANG H R, ZHANG X L, et al.Comprehensive influence of Y on K417 superalloy: purification, interactions among the alloy elements and high temperature properties[J].Materials Science and Engineering A, 2019, 755:190-200.
[17] BIAN W D, ZHANG H R, GAO M,et al .Influence of yttrium and vacuum degree on the purification of K417 superalloy[J].Vacuum, 2018, 152: 57-64.
[18] 裴忠冶. K465镍基高温合金的研究[D]. 沈阳:东北大学, 2009.
[19] GUO X T, ZHENG W W, AN W R, et al.High temperature creep behavior of a cast polycrystalline nickel-based superalloy K465 under thermal cycling conditions[J].Materialia, 2020, 14: 100913.
[20] GUO X T, ANTONOV S, LU F,et al.Solidification rate driven microstructural stability and its effect on the creep property of a polycrystalline nickel-based superalloy K465[J].Materials Science and Engineering A, 2020, 770:138530.
[21] 宛德福, 马兴隆. 磁性物理学[M]. 北京:电子工业出版社, 1999.
[1] MA Jing, LI Jiao, GONG Xiao-tao, GENG Pei, ZHOU Chao. Effect of Electron Beam Melting Process on Surface Quality of Ta Ingot [J]. VACUUM, 2020, 57(6): 45-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .