欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (5): 70-76.doi: 10.13385/j.cnki.vacuum.2025.05.11

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

ANSYS Parameter Optimization of Thermal Insulation Layer for Vacuum Sintering Furnace

WANG Yuanhui, ZHOU Mingxu, LI Jianchang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2024-10-31 Published:2025-09-29

Abstract: To improve the thermal insulation performance and temperature uniformity of vacuum sintering furnace, the thermal insulation layer parameters were optimized using the theoretical model of heat transfer. The ANSYS steady-state thermal analysis method was used to study the effects of graphite plate thickness, carbon felt thickness, and the distance between the thermal insulation layer and the heating element on the thermal insulation performance and temperature field of the vacuum furnace. The results show that, 150 mm-thick carbon felt can largely improve the thermal insulation performance and temperature uniformity, but such improvement is little with further increasing the felt thickness. When the distance between the thermal insulation layer and the heating element is 80 mm, the temperature on the inner side of the thermal insulation layer reaches as high as 1 008.5 ℃. Moreover, compared with the case of original 100 mm-distance, the number of uniform temperature points increases by 10.4%. The thickness of the graphite plate has little and negligible effect on the temperature field.

Key words: vacuum sintering furnace, ANSYS steady-state thermal analysis, thermal insulation performance, temperature uniformity

CLC Number:  TF12

[1] XU M, GIRISH Y R, RAKESH K P, et al.Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533.
[2] WANG X, GAO X, ZHANG Z, et al.Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688.
[3] 王秉铨. 工业炉设计手册[M]. 北京: 机械工业出版社, 2010: 274-280.
[4] SIEGEL R.Transient thermal analysis for heating a translucent wall with opaque radiation barriers[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(3): 277-284.
[5] 吴道雄, 史鑫尧, 张雁祥. 真空热处理炉的隔热屏设计及传热学分析[J]. 热处理技术与装备, 2015, 36(5): 73-76.
[6] 王硕彬, 丛培武, 陆文林,等. 真空炉隔热屏保温效果的数值仿真[J].金属热处理,2022,47(6):249-252.
[7] 高新民. 真空电阻炉的隔热层[J].真空, 1981,18(5):1-5.
[8] 王昊杰, 李勇, 王昭东, 等. 真空渗碳炉加热室温度场数值模拟与分析[J]. 热加工工艺, 2016, 45(24): 172-176.
[9] 雷金辉, 付彤, 陈焰. 内热式多级连续真空炉稳态温度场研究[J]. 特种铸造及有色合金, 2017, 37(7): 715-718.
[10] 张啸鹏. 基于建模仿真的真空烧结炉温度场研究与结构参数优化[D]. 广州:广东工业大学, 2020.
[11] 马越. 多晶硅还原炉内温度场模拟[D]. 北京:中国矿业大学, 2019.
[12] WANG Y, LIU Z.Development of numerical modeling and temperature controller optimization for internal heating vacuum furnace[J]. IEEE Access, 2021, 9:126765-126773.
[13] 张铭智. 基于ANSYS的真空炉瞬态温度场模拟及生产工艺优化[D]. 镇江: 江苏科技大学, 2022.
[14] 王硕彬. 真空炉炉胆温度场及热变形模拟研究[D]. 北京:机械科学研究总院, 2023.
[15] 韩立勇, 杨星团, 姜胜耀, 等. 真空石墨加热器温度场数值模拟与分析[J]. 原子能科学技术, 2011, 45(5): 559-563.
[16] ABADI M M, TANG H Y, RASHIDI M M, et al.A review of simulation and numerical modeling of electric arc furnace (EAF) and its processes[J]. Heliyon, 2024, 10(11): 32157.
[17] 修豪华. 真空炉加热温度场及气淬过程气流场数值模拟研究[D]. 长春:吉林大学, 2015.
[18] 熊梨. 真空烧结炉加热特性与系统优化研究[D]. 湘潭:湖南科技大学, 2022.
[19] 阎承沛. 真空热处理工艺与设备设计[M]. 北京: 机械工业出版社, 1998.
[20] 王翠平. 石墨纤维材料高温导热系数获取及真空烧结炉温度场模拟[D]. 济南:山东大学,2020.
[21] 王天全. 电阻炉设计[M]. 北京: 航空工业出版社, 2000.
[22] BADSHAH S, ATIF M, UL HAQ I, et al.Thermal analysis of vacuum resistance furnace[J]. Processes, 2019, 7(12): 907.
[23] 王婧,唐丽娜,王皓,等. 真空炉内温度场的模拟及真空加热工艺评估[J]. 热处理,2021,36(1):1-5.
[24] 梁佰强,王海龙. 基于ANSYS高真空钎焊炉温度场数值模拟研究[J]. 热加工工艺,2020,49(21):139-142.
[25] 丁智超,王海龙. 真空钎焊炉全工艺过程温度场数值模拟及工艺优化[J]. 焊接技术,2024,53(1):55-60.
[26] YANG C Z, LIU G X, CHEN C M, et al.Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils[J]. Applied Sciences, 2018, 8(5): 705.
[27] FU Z, YU X, SHANG H, et al.A new modelling method for superalloy heating in resistance furnace using FLUENT[J]. International Journal of Heat and Mass Transfer, 2019, 128: 679-687.
[1] ZHOU Mingxu, LI Jianchang. Effect of Graphite-Plate Thickness on the Temperature Field in Silicon Carbide Vacuum Sintering Furnace [J]. VACUUM, 2025, 62(4): 49-53.
[2] CHEN Bolong, LI Zhongren, WANG Ying, WU Yifei, SU Ning, SONG Jiaxing, CHE Enlin, LIU Jun. Study on Temperature Uniformity of Heat Treatment System for Large Superconducting Coils [J]. VACUUM, 2025, 62(3): 33-37.
[3] TANG Rong, GUAN Jie, LU Shaobo, LI Runxia, HAN Yongchao. Development and Temperature Uniformity Measurement of Large Metal Sealed Vacuum Furnace [J]. VACUUM, 2025, 62(3): 84-88.
[4] WANG Yuan-qi, HU Yang-gang, WANG Lei. Prediction of Vacuum Glass Insulation Performance Based on Random Forest [J]. VACUUM, 2023, 60(5): 55-59.
[5] LU Shao-bo, HAN Yong-chao, SONG Yan-peng, ZHANG Ji-feng. Design of Deep Well Vacuum Brazing Equipment for Nuclear Power Components Manufacturing [J]. VACUUM, 2023, 60(3): 72-75.
[6] XIE Yong-qiang, JIN Li-yan, YANG Xiao-dong, WANG Cheng-jun, XIA Dan, SU Chun. Finite Elements Analysis and Optimal Design for the Temperature Field of Vacuum Brazing Furnace [J]. VACUUM, 2021, 58(4): 58-62.
[7] DAI Chen, NAN Hai-juan, SHENG Xiao-yang, CONG Lun-gang, LI Cai-xia. Modification of the Control System of Vacuum Sintering Furnace for Porous Metal Materials [J]. VACUUM, 2021, 58(4): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .