VACUUM ›› 2025, Vol. 62 ›› Issue (5): 70-76.doi: 10.13385/j.cnki.vacuum.2025.05.11
• Vacuum Metallurgy and Thermal Engineering • Previous Articles Next Articles
WANG Yuanhui, ZHOU Mingxu, LI Jianchang
CLC Number: TF12
| [1] XU M, GIRISH Y R, RAKESH K P, et al.Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533. [2] WANG X, GAO X, ZHANG Z, et al.Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688. [3] 王秉铨. 工业炉设计手册[M]. 北京: 机械工业出版社, 2010: 274-280. [4] SIEGEL R.Transient thermal analysis for heating a translucent wall with opaque radiation barriers[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(3): 277-284. [5] 吴道雄, 史鑫尧, 张雁祥. 真空热处理炉的隔热屏设计及传热学分析[J]. 热处理技术与装备, 2015, 36(5): 73-76. [6] 王硕彬, 丛培武, 陆文林,等. 真空炉隔热屏保温效果的数值仿真[J].金属热处理,2022,47(6):249-252. [7] 高新民. 真空电阻炉的隔热层[J].真空, 1981,18(5):1-5. [8] 王昊杰, 李勇, 王昭东, 等. 真空渗碳炉加热室温度场数值模拟与分析[J]. 热加工工艺, 2016, 45(24): 172-176. [9] 雷金辉, 付彤, 陈焰. 内热式多级连续真空炉稳态温度场研究[J]. 特种铸造及有色合金, 2017, 37(7): 715-718. [10] 张啸鹏. 基于建模仿真的真空烧结炉温度场研究与结构参数优化[D]. 广州:广东工业大学, 2020. [11] 马越. 多晶硅还原炉内温度场模拟[D]. 北京:中国矿业大学, 2019. [12] WANG Y, LIU Z.Development of numerical modeling and temperature controller optimization for internal heating vacuum furnace[J]. IEEE Access, 2021, 9:126765-126773. [13] 张铭智. 基于ANSYS的真空炉瞬态温度场模拟及生产工艺优化[D]. 镇江: 江苏科技大学, 2022. [14] 王硕彬. 真空炉炉胆温度场及热变形模拟研究[D]. 北京:机械科学研究总院, 2023. [15] 韩立勇, 杨星团, 姜胜耀, 等. 真空石墨加热器温度场数值模拟与分析[J]. 原子能科学技术, 2011, 45(5): 559-563. [16] ABADI M M, TANG H Y, RASHIDI M M, et al.A review of simulation and numerical modeling of electric arc furnace (EAF) and its processes[J]. Heliyon, 2024, 10(11): 32157. [17] 修豪华. 真空炉加热温度场及气淬过程气流场数值模拟研究[D]. 长春:吉林大学, 2015. [18] 熊梨. 真空烧结炉加热特性与系统优化研究[D]. 湘潭:湖南科技大学, 2022. [19] 阎承沛. 真空热处理工艺与设备设计[M]. 北京: 机械工业出版社, 1998. [20] 王翠平. 石墨纤维材料高温导热系数获取及真空烧结炉温度场模拟[D]. 济南:山东大学,2020. [21] 王天全. 电阻炉设计[M]. 北京: 航空工业出版社, 2000. [22] BADSHAH S, ATIF M, UL HAQ I, et al.Thermal analysis of vacuum resistance furnace[J]. Processes, 2019, 7(12): 907. [23] 王婧,唐丽娜,王皓,等. 真空炉内温度场的模拟及真空加热工艺评估[J]. 热处理,2021,36(1):1-5. [24] 梁佰强,王海龙. 基于ANSYS高真空钎焊炉温度场数值模拟研究[J]. 热加工工艺,2020,49(21):139-142. [25] 丁智超,王海龙. 真空钎焊炉全工艺过程温度场数值模拟及工艺优化[J]. 焊接技术,2024,53(1):55-60. [26] YANG C Z, LIU G X, CHEN C M, et al.Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils[J]. Applied Sciences, 2018, 8(5): 705. [27] FU Z, YU X, SHANG H, et al.A new modelling method for superalloy heating in resistance furnace using FLUENT[J]. International Journal of Heat and Mass Transfer, 2019, 128: 679-687. |
| [1] | ZHOU Mingxu, LI Jianchang. Effect of Graphite-Plate Thickness on the Temperature Field in Silicon Carbide Vacuum Sintering Furnace [J]. VACUUM, 2025, 62(4): 49-53. |
| [2] | CHEN Bolong, LI Zhongren, WANG Ying, WU Yifei, SU Ning, SONG Jiaxing, CHE Enlin, LIU Jun. Study on Temperature Uniformity of Heat Treatment System for Large Superconducting Coils [J]. VACUUM, 2025, 62(3): 33-37. |
| [3] | TANG Rong, GUAN Jie, LU Shaobo, LI Runxia, HAN Yongchao. Development and Temperature Uniformity Measurement of Large Metal Sealed Vacuum Furnace [J]. VACUUM, 2025, 62(3): 84-88. |
| [4] | WANG Yuan-qi, HU Yang-gang, WANG Lei. Prediction of Vacuum Glass Insulation Performance Based on Random Forest [J]. VACUUM, 2023, 60(5): 55-59. |
| [5] | LU Shao-bo, HAN Yong-chao, SONG Yan-peng, ZHANG Ji-feng. Design of Deep Well Vacuum Brazing Equipment for Nuclear Power Components Manufacturing [J]. VACUUM, 2023, 60(3): 72-75. |
| [6] | XIE Yong-qiang, JIN Li-yan, YANG Xiao-dong, WANG Cheng-jun, XIA Dan, SU Chun. Finite Elements Analysis and Optimal Design for the Temperature Field of Vacuum Brazing Furnace [J]. VACUUM, 2021, 58(4): 58-62. |
| [7] | DAI Chen, NAN Hai-juan, SHENG Xiao-yang, CONG Lun-gang, LI Cai-xia. Modification of the Control System of Vacuum Sintering Furnace for Porous Metal Materials [J]. VACUUM, 2021, 58(4): 63-66. |
|