VACUUM ›› 2025, Vol. 62 ›› Issue (6): 70-79.doi: 10.13385/j.cnki.vacuum.2025.06.10
• Measurement and Control • Previous Articles Next Articles
QU Qilong1, DAI Cheng2, ZHANG Zhijun1, AI Shiyi1
CLC Number: TP391.4
| [1] 李卫平,江国焱,罗炜,等.真空氦检漏技术在ITER项目中的应用[J].无损检测,2023,45(6):1-6. [2] 胡茂中,白国云.低充氦浓度氦质谱检漏技术应用研究[J].真空科学与技术学报,2011,31(2):208-211. [3] 孙开磊,甄占昌,张聪,等. 氦质谱检漏设备故障排除与维护保养[J]. 中国设备工程,2021(4):49-50. [4] 陈思翼. 车用空调智能车间氦检漏设备信息建模及云端接入技术[D]. 重庆:重庆邮电大学,2018. [5] GAO Z, CECATI C, DING S X.A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE transactions on industrial electronics, 2015, 62(6): 3757-3767. [6] TANG L, TIAN H, HUANG H, et al.A survey of mechanical fault diagnosis based on audio signal analysis[J]. Measurement, 2023, 220: 113294. [7] 何擎. 氦质谱检漏仪灯丝脆断故障的研究与解决[J].真空电子技术,2017(4):55-57. [8] JIANG Y, YIN S, KAYNAK O.Optimized design of parity relation-based residual generator for fault detection: data-driven approaches[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 1449-1458. [9] DAI X, GAO Z.From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2226-2238. [10] HAN C, CHANG W, YUAN F, et al.A process fault detection method based on PCA and linear regression[C]//2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). Nanjing, China: IEEE, 2023: 451-455. [11] YAN G, CHEN J, BAI Y, et al.A survey on fault diagnosis approaches for rolling bearings of railway vehicles[J]. Processes, 2022, 10(4): 724. [12] ZHANG Q, GAO J, DONG H, et al.WPD and DE/BBO-RBFNN for solution of rolling bearing fault diagnosis[J]. Neurocomputing, 2018, 312: 27-33. [13] ZHANG X, LIANG Y, ZHOU J.A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J]. Measurement, 2015, 69: 164-179. [14] HU Q, SI X S, QIN A S, et al.Machinery fault diagnosis scheme using redefined dimensionless indicators and mRMR feature selection[J]. IEEE Access, 2020, 8: 40313-40326. [15] XU Y, ZHANG K, MA C, et al.An adaptive spectrum segmentation method to optimize empirical wavelet transform for rolling bearings fault diagnosis[J]. IEEE Access, 2019, 7: 30437-30456. [16] Yang C Y, Wu T Y.Diagnostics of gear deterioration using EEMD approach and PCA process[J]. Measurement, 2015, 61: 75-87. [17] YANG T, PEN H, WANG Z, et al.Feature knowledge based fault detection of induction motors through the analysis of stator current data[J]. IEEE Transactions on instrumentation and Measurement, 2016, 65(3): 549-558. [18] LEI Y, YANG B, JIANG X, et al.Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical systems and signal processing, 2020, 138: 106587. [19] SUNAL C E, DYO V, VELISAVLJEVIC V.Review of machine learning based fault detection for centrifugal pump induction motors[J]. IEEE access, 2022,10:71344-71355. [20] 黄开基,杨华.基于深度学习特征的二维图像匹配算法综述[J].计算机工程,2024,50(10):16-34. [21] 胡海彬,刘仁鑫,刘日龙,等.卷积神经网络在机械故障诊断中的应用综述[J].机械工程与自动化,2024,(4):221-223. [22] 赵小强,罗维兰.改进卷积Lenet-5神经网络的轴承故障诊断方法[J].电子测量与仪器学报,2022,36(6):113-125. [23] 刘涛,麻德权.基于CBAM-CNN的涡旋压缩机故障诊断[J].振动.测试与诊断,2024,44(5):900-906. [24] 罗丫,葛可可,袁晓文,等.基于分段位移激励函数的贯穿式故障建模及滚动轴承振动特性分析[J].工程设计学报,2025,32(1):112-120. [25] 张腾. 不平衡数据集均衡化方法研究及其应用[D].北京:中国石油大学, 2018. [26] 张雷,王光华,曹磊,等.基于GAN模型与随机森林算法的保护系统智能状态评价与预警[J].电力科学与技术学报,2021,36(6):104-112. [27] ZOHREVAND A, IMANI Z.An empirical study of the performance of different optimizers in the deep neural networks[C]//2022 International Conference on Machine Vision and Image Processing (MVIP). Ahvaz, Iran: IEEE, 2022: 1-5. |
|