VACUUM ›› 2025, Vol. 62 ›› Issue (4): 69-74.doi: 10.13385/j.cnki.vacuum.2025.04.13
• Thin Film • Previous Articles Next Articles
NI Jun1,2, GUO Teng1,2, LI Canlun1,2, HOU Kailin3, LI Rongyi3
CLC Number: TB43
[1] ZHENG X P, ZHENG S, KONG Y G, et al.Recent advances in surface defect inspection of industrial products using deep learning techniques[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 35-58. [2] WAN X, ZHANG X Y, LIU L L.An improved VGG19 transfer learning strip steel surface defect recognition deep neural network based on few samples and imbalanced datasets[J]. Applied Sciences, 2021, 11(6): 2606. [3] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788. [4] REDMON J, FARHADI A.YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271. [5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. arXiv:1804.02767, 2018. [6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[R]. arXiv:2004.10934, 2020. [7] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[R]. arXiv:2209.02976, 2022. [8] WANG C Y, BOCHKOVSKIY A, MARK LIAO H Y. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, 2023:7464-7475. [9] WANG C Y, YEH I H, MARK LIAO H Y. Yolov9: learning what you want to learn using programmable gradient information[C]// Computer Vision-ECCV 2024. Milan, Italy: Springer International Publishing, 2024. [10] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[R]. arXiv:2405.14458, 2024. [11] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[R]. arXiv:2410.17725, 2024. [12] LIU W, ANGUELOV D, ERHAN D, et al.Ssd: single shot multibox detector[C]//Computer Vision-ECCV 2016. Amsterdam, The Netherlands: Springer International Publishing, 2016. [13] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 42(2):318-327. [14] GIRSHICK R, DONAHUE J, DARRELL T, et al.Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 38(1):142-158. [15] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 39(6): 1137-1149. [16] HAN K, WANG Y H, TIAN Q, et al.Ghostnet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 1580-1589. [17] TAN J, YANG Z, REN J, et al.A novel robust low-rank multi-view diversity optimization model with adaptive-weighting based manifold learning[J]. Pattern Recognition, 2022, 122:108298. [18] CHEN H, DU Y, FU Y, et al.DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:1-12. [19] TIAN R, JIA M.DCC-CenterNet: A Rapid Detection Method for Steel Surface Defects[J]. Measurement, 2022, 187:110211. [20] DU Y, CHEN H, FU Y, et al.AFF-Net: A Strip Steel Surface Defect Detection Network via Adaptive Focusing Features[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73:1-14. [21] QIAN X, WANG., YANG S, et al. LFF-YOLO: A YOLO Algorithm with Lightweight Feature Fusion Network for Multi-Scale Defect Detection[J]. IEEE Access, 2022, 10: 130339-130349. [22] HU X, LIN S.DFFNet: A Lightweight Approach for Efficient Feature-Optimized Fusion in Steel Strip Surface Defect Detection[J]. Complex & Intelligent Systems, 2024, 10(5): 6705-6723. [23] HOU Q, ZHOU D, FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:13713-13722. [24] ZHENG Z H, WANG P, LIU W, et al.Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7):12993-13000. [25] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[R]. arXiv:2205.12740,2022. [26] AMARI S I.Backpropagation and stochastic gradient descent method[J]. Neurocomputing, 1993, 5(4/5):185-196. [27] MISRA D.Mish: a self regularized non-monotonic activation function[R]. arXiv:1908.08681, 2019. |
[1] | TANG Zheng. Study on Film Formation Uniformity of Horizontally Moving Substrate by Array Evaporation Sources [J]. VACUUM, 2024, 61(6): 21-25. |
[2] | LI Xiang, JIANG Xiao-jiao, ZHAN Chun-ming, LIU Ang, SUN Ning, LI Jia-ping. Research on Design Method of Liquid Cooled Heater for Vacuum Coating Equipment Based on System Regression Model [J]. VACUUM, 2024, 61(4): 6-11. |
[3] | LI Can-lun, NI Jun, GUO Teng, HAN Wei, WANG Fei, QI Song-song, LI Hui, FAN Xiao-peng, FAN Qiu-lin. Research on Optical Properties of CPI Film Second Surface Mirror [J]. VACUUM, 2024, 61(3): 70-73. |
[4] | SUN Bin, LIU Xing-long, XU Cheng-yuan, WANG Qing, LIN Zeng. Vacuum Coating Helps Low-carbon Manufacturing and Sustainable Development [J]. VACUUM, 2023, 60(3): 12-17. |
[5] | YOU Jin-shan. SIS Design and Application for Vacuum Coating Equipment [J]. VACUUM, 2021, 58(5): 80-84. |
[6] | DENG Wen-yu, WANG Peng-yang, QI Li-jun, DUAN Yong-li, SUN Bao-yu, WAN Yi, ZHANG Xin-jie, XIE Yuan-hua, DU Guang-yu, LIU Kun. Research Progress on Corrosion Mechanism, Protection of NdFeB Permanent Magnet Materials [J]. VACUUM, 2020, 57(5): 45-51. |
[7] | WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6. |
[8] | ZHANG Fen-li, DENG Jing-lian, WANG Jie-feng, MENG Qing-yuan. Study on the pretreatment cleaning process of steel tube before coating [J]. VACUUM, 2018, 55(6): 60-63. |
|