欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (6): 11-17.doi: 10.13385/j.cnki.vacuum.2020.06.03

• 薄膜 • 上一篇    下一篇

磁控溅射制备不锈钢基耐蚀导电薄膜研究进展

冯绅绅, 汪亮, 李斌, 余清洲, 干蜀毅   

  1. 合肥工业大学机械工程学院,安徽 合肥 230009
  • 收稿日期:2020-07-30 出版日期:2020-11-25 发布日期:2020-11-30
  • 通讯作者: 干蜀毅,教授。
  • 作者简介:冯绅绅(1995-),男,河南省商丘市人,硕士生。

Research Progress of Corrosion-Resistant and Conductive Films on Stainless Steel Substrate Prepared by Magnetron Sputtering

FENG Shen-shen, WANG Liang, LI Bin, YU Qing-zhou, GAN Shu-yi   

  1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2020-07-30 Online:2020-11-25 Published:2020-11-30

摘要: 不锈钢基耐腐蚀导电薄膜被广泛应用于燃料电池双极板等器件,要求具有高的耐腐蚀性和导电性、良好的机械性能、加工成本低等特点。然而,目前的不锈钢基薄膜耐腐蚀性和导电性难以兼得,实现这两种性能的合理匹配,降低生产成本,是金属基薄膜商业化的关键环节之一。本文系统总结了磁控溅射制备不锈钢基耐腐蚀导电薄膜的研究进展,并从制备材料种类、工艺参数等方面进行了详细分析。文末还展望了不锈钢基耐腐蚀导电薄膜的发展方向。

关键词: 耐蚀薄膜, 导电薄膜, 不锈钢基

Abstract: Tainless steel-based corrosion-resistant conductive films are widely used in fuel cell bipolar plates and other devices, which require high corrosion resistance and electrical conductivity, good mechanical properties, and low processing costs. However, it is difficult to have both corrosion resistance and electrical conductivity of the current stainless steel-based films. Realizing the reasonable matching of these two properties and reducing production costs are one of the key points in the commercialization of metal-based films. This paper systematically summarizes the research progress in the preparation of stainless steel-based corrosion-resistant conductive films by magnetron sputtering, and analyzes in detail the types of preparation materials and process parameters. At the end of the article, the development direction of stainless steel-based corrosion-resistant conductive film is also prospected.

Key words: corrosion resistant film, conductive film, stainless steel base

中图分类号: 

  • TG179
[1] 李俊超, 王清, 蒋锐, 等. 质子交换膜燃料电池双极板材料研究进展[J]. 材料导报, 2018, 32(15): 75-86+91.
[2] Taherian R.A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390.
[3] 李建秋, 方川, 徐梁飞. 燃料电池汽车研究现状及发展[J]. 汽车安全与节能学报, 2014, 5(1): 17-29.
[4] Park T, Chang I, Lee Y H, et al.Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation[J]. Energy, 2014, 66: 77-81.
[5] Mehta V, Cooper J S.Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53.
[6] Hermann A, Tapas Chaudhuri, Priscila Spagnol.Bipolar plates for PEM fuel cells: A review[J]. International Journal of Hydrogen Energy, 2005, 30(12): 1297-1302.
[7] Makkus R C, Janssen A H H, Bruijn F A D, et al. Use of stainless steel for cost competitive bipolar plates in the SPFC[J]. Journal of Power Sources, 2000, 86(1-2): 274-282.
[8] Yanjie L, Chunrong Z, Guangmeng L, et al.A review on corrosion and protection of metallic bipolar plates for proton exchange membrane fuel cell[J]. Corrosion Science & Protection Technology, 2009, 21(4): 388-392.
[9] 梁戈, 郑彬娜, 蒋百灵, 等. 磁控溅射离子镀基体偏压对类石墨碳膜组织形貌及性能的影响[J]. 兵器材料科学与工程, 2007, 30(4): 13-16.
[10] Robertson J.Deposition mechanisms for promoting sp3 bonding in diamond-like carbon[J]. Diamond & Related Materials, 1993, 2(5-7): 984-989.
[11] Lifshitz Y, Kasi S R, Rabalais J W, et al.Subplantation model for film growth from hyperthermal species[J]. Physical Review B, 1990, 41(15): 10468.
[12] Afshar A, Yari M, Larijani M M, et al.Effect of substrate temperature on structural properties and corrosion resistance of carbon thin films used as bipolar plates in polymer electrolyte membrane fuel cells[J]. Journal of Alloys & Compounds, 2010, 502(2): 451-455.
[13] Sisan M M, Sereshki M A, Khorsand H, et al.Carbon coating for corrosion protection of SS-316L and AA-6061 as bipolar plates of PEM fuel cells[J]. Journal of Alloys & Compounds, 2014, 613(7): 288-291.
[14] 张海峰. PEMFC不锈钢双极板表面改性碳基薄膜及其特性研究[D]. 杭州: 浙江工业大学, 2015.
[15] Rossi F, André B, van Veen A, et al. Effect of ion beam assistance on the microstructure of nonhydrogenated amorphous carbon[J]. Journal of applied physics, 1994, 75(6): 3121-3129.
[16] Jin W H, Feng K, Li Z G, et al.Properties of carbon film deposited on stainless steel by close field unbalanced magnetron sputter ion plating[J]. Thin Solid Films, 2013, 531: 320-327.
[17] 李伟, 李争显, 刘林涛, 等. 质子交换膜燃料电池金属双极板表面改性研究进展[J]. 表面技术, 2018, 47(10): 92-100.
[18] Mingge W, Congda L, Dapeng T, et al.Effects of metal buffer layer for amorphous carbon film of 304 stainless steel bipolar plate[J]. Thin Solid Films, 2016, 616: 507-514.
[19] 胡仁涛, 陆境莲, 朱光明, 等. 磁控溅射类石墨碳膜的导电性和耐蚀性[J]. 电池, 2019(3): 195-198.
[20] Hu R T, Tang J N, Zhu G M, et al. The effect of duty cycle and bias voltage for graphite-like carbon film coated 304 stainless steel as metallic bipolar plate[J]. Journal of Alloys and Compounds, 2018: S0925838818334091-.
[21] Alami J, Gudmundsson J T, Bohlmark J, et al.Plasma dynamics in a highly ionized pulsed magnetron discharge[J]. Plasma Sources Science and Technology, 2005, 14(3): 525.
[22] Aijaz A, Sarakinos K, Lundin D, et al.A strategy for increased carbon ionization in magnetron sputtering discharges[J]. Diamond and related materials, 2012, 23: 1-4.
[23] 马安博. 高功率脉冲磁控溅射技术的研究及应用[J]. 真空, 2018, 55(2): 26-29.
[24] Dong H, He Z, Zhang S, et al.Effect of temperature and bias voltage on electrical and electrochemical properties of diamond-like carbon films deposited with HiPIMS[J]. Surface and Coatings Technology, 2019, 358: 987-993.
[25] Khun N W, Liu E, Yang G C, et al.Structure and corrosion behavior of platinum/ruthenium/nitrogen doped diamondlike carbon thin films[J]. Journal of Applied Physics, 2009, 106(1): 013506.
[26] Li R L, Tu J P, Hong C F, et al.Microstructure and tribological properties of Ti-contained amorphous carbon film deposited by DC magnetron sputtering[J]. Journal of Applied Physics, 2009, 106(12): 123508.
[27] 张以忱. 真空镀膜技术[M]. 北京: 冶金工业出版社, 2009: 167-170.
[28] Robertson J.Diamond-like amorphous carbon[J]. Materials Science & Engineering R Reports, 2002, 37(4): 129-281.
[29] Zhang S, Sun D, Fu Y, et al.Toughening of hard nanostructural thin films: A critical review[J]. Surface and Coatings Technology, 2005, 198(1): 2-8.
[30] Wang Y X, Wang L P, Xue Q J.Influence of Ti target current on microstructure and properties of Ti-doped graphite-like carbon films[J]. Transactions of the Nonferrous Metals Society of China, 2012, 22(6): 1372-1380.
[31] Bai W Q, Xie Y J, Li L L, et al.Tribological and corrosion behaviors of Zr-doped graphite-like carbon nanostructured coatings on Ti6Al4V alloy[J]. Surface and Coatings Technology, 2017, 320: 235-239.
[32] 邢益彬, 蒋百灵, 李洪涛, 等. 铝合金双极板磁控溅射Ag掺杂类石墨薄膜表面改性研究[J]. 表面技术, 2017(8): 67-71.
[33] Adelhelm C, Balden M, Rinke M, et al.Influence of doping(Ti, V, Zr, W)and annealing on the sp2 carbon structure of amorphous carbon films[J]. Journal of Applied Physics, 2009, 105(3): 033522.
[34] Wang Z, Feng K, Li Z, et al.Self-passivating carbon film as bipolar plate protective coating in polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(13): 5783-5792.
[35] 肖宇. 不锈钢表面沉积Cr2N及其耐腐蚀性和导电性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
[36] Jin C K, Lee K H, Kang C G.Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process[J]. International Journal of Hydrogen Energy, 2015, 40(20): 6681-6688.
[37] Zhang D, Duan L, Guo L, et al.Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3721-3726.
[38] 王槐乾, 姜宏伟. 磁控溅射反应法制备TiN纳米薄膜[J]. 真空, 2019, 56(4): 37-39.
[39] Zhang H B, Lin G Q, Hou M, et al.CrN/Cr multilayer coating on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 198: 176-181.
[40] Feng K, Li Z, Lu F, et al.Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel[J]. Journal of Power Sources, 2014, 249: 299-305.
[41] 蔚林, 易培云, 彭林法. 铬掺杂的金属极板氮化钛膜层制备及性能[J]. 机械设计与研究, 2015(6): 31-33.
[42] Zhao Y, Wei L, Yi P, et al.Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs[J]. International Journal of Hydrogen Energy, 2015, 41(2): 1142-1150.
[43] Alishahi M, Mahboubi F, Khoie S M M, et al. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells[J]. Journal of Power Sources, 2016, 322: 1-9.
[44] Bi F, Peng L, Yi P, et al.Multilayered Zr-C/aC film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 314: 58-65.
[1] 李明亮, 刘利, 沈燕. Ag层厚度对AZO/Ag/AZO透明导电薄膜性能的影响[J]. 真空, 2020, 57(1): 31-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!