欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (2): 26-31.doi: 10.13385/j.cnki.vacuum.2022.02.06

• 真空获得与设备 • 上一篇    下一篇

面向聚变堆排灰气的直线型水银扩散泵抽气性能DSMC模拟研究*

廖泽宇1, 毛世峰1, 赵长莲2, 叶民友1   

  1. 1.中国科学技术大学核科学技术学院,安徽 合肥 230027;
    2.中国电子科技集团公司第三十八研究所,安徽 合肥 230001
  • 收稿日期:2021-03-23 出版日期:2022-03-25 发布日期:2022-04-14
  • 通讯作者: 毛世峰,副教授。
  • 作者简介:廖泽宇(1996-),男,四川省眉山市人,硕士。
  • 基金资助:
    *国家重点研发计划(2017YFE0301501); 中国科学院合肥大科学中心协同创新培育基金项目(2020HSC-CIP015)

DSMC Simulation Study on the Pumping Performance of Linear Mercury Diffusion Pump for Exhaust Gas of Fusion Reactor

LIAO Ze-yu1, MAO Shi-feng1, ZHAO Chang-lian2, YE Min-you1   

  1. 1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, China;
    2. 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230001, China
  • Received:2021-03-23 Online:2022-03-25 Published:2022-04-14

摘要: 在德国卡尔斯鲁厄理工学院提出的KALPUREX(Karlsruhe liquid metal based pumping process for fusion reactor exhaust gases)流程中,利用直线型水银扩散泵实现对聚变堆排灰气的连续抽气,从而解决使用捕集式低温泵带来的高氚滞留量问题。为了支持直线型水银扩散泵的设计研究,基于直接模拟蒙特卡洛方法开展了直线型水银扩散泵的抽气性能模拟研究。基于早期实验中的直线型水银扩散泵结构,模拟了空气的抽气速率及水银返流率,并分析了其随压强变化的原因。针对聚变堆排灰气中可能包含的氢(作为氢同位素的代表)、氦、氖、氩等气体,分别模拟了直线型水银扩散泵的抽气性能。模拟得到的不同气体的抽气速率与气体摩尔质量间的关系基本符合理论预测。

关键词: 聚变堆排灰气, 直接模拟蒙特卡洛, 直线型水银扩散泵, 抽气速率, 返流率

Abstract: In the KALPUREX(Karlsruhe liquid metal based pumping process for fusion reactor exhaust gases) process proposed by Karlsruher Institut für Technologie(KIT), the linear mercury diffusion pump(LMDP) is used for the exhaust gas of fusion reactor to realize continuously pumping, so as to solve the problem of high tritium inventory caused by the use of the cryogenic pump. In order to support the design of LMDP, the pumping performance of LMDP is simulated based on the Direct Simulation Monte Carlo(DSMC) method. Based on the structure of LMDP in the early experiment, the pumping speed of air and the back-streaming rate of mercury are simulated, and their relationships with the pressure are analyzed. For hydrogen(as the representative of hydrogen isotope), helium, neon and argon, which would be contained in the exhaust gas of fusion reactor, the pumping performance of LMDP is simulated respectively. The relationship between the pumping speeds of different gases and their molar mass is consistent between the simulation result and the theoretical prediction.

Key words: exhaust gas of fusion reactor, DSMC, linear mercury diffusion pump, pumping speed, back-streaming rate

中图分类号: 

  • TB752+.3
[1] 赵林杰, 肖成建, 龙兴贵, 等. 聚变能源中的氚化学与氚工艺研究进展及展望[J]. 核化学与放射化学, 2019, 41(1): 40-59.
[2] GLUGLA M, MURDOCH D K, ANTIPENKOV A, et al.ITER fuel cycle R&D: Consequences for the design[J]. Fusion Engineering & Design, 2006, 81(1-7): 733-744.
[3] ABDOU M, MORLEY N B, SMOLENTSEV S, et al.Blanket/first wall challenges and required R&D on the pathway to DEMO[J]. Fusion Engineering & Design, 2015, 100(7): 2-43.
[4] DAY C, GIEGERICH T.The direct internal recycling concept to simplify the fuel cycle of a fusion power plant[J]. Fusion Engineering & Design,2013,88(6-8):616-620.
[5] FEDERICI G, BACHMANN C, BARUCCA L, et al.DEMO design activity in Europe: Progress and updates[J]. Fusion Engineering & Design, 2018, 136: 729-741.
[6] DAY C, BUTLER B, GIEGERICH T, et al.A smart three-loop fuel cycle architecture for DEMO[J]. Fusion Engineering & Design, 2019, 146: 2462-2468.
[7] GIEGERICH T, DAY C.The KALPUREX-process-A new vacuum pumping process for exhaust gases in fusion power plants[J]. Fusion Engineering & Design, 2014, 89(7-8): 1476-1481.
[8] DAY C, GIEGERICH T.Development of advanced exhaust pumping technology for a DT fusion power plant[J]. IEEE Transactions on Plasma Science, 2014, 42(4): 1058-1071.
[9] PEARCE R J, ANTIPENKOV A, BOUSSIER B, et al.The ITER divertor pumping system,design evolution, simplification and performance[J]. Fusion Engineering & Design, 2013, 88(6-8): 809-813.
[10] FOLKERS C L, GEDE V P.Transfer operations with tritium-A review[C]//Proceedings of 23rd Conference on Remote Systems Technology, San Francisco, 1975.
[11] ABEL B D.TFTR vacuum system[J]. Journal of Vacuum Science & Technology, 1978, 15(2): 726-733.
[12] GIEGERICH T, DAY C, GLISS C, et al.Preliminary configuration of the torus vacuum pumping system installed in the DEMO lower port[J]. Fusion Engineering & Design, 2019, 146: 2180-2183.
[13] LIND E R, STEINHAUS J F, Development of a large, linear jet, mercury diffusion pump having high pumping speeds in the 10-6mm. mercury absolute pressure range[J]. Vacuum, 1953, 3(2): 190.
[14] BIRD G A.Molecular gas dynamics and the direct Simulation of gas flow[M]. New York: Oxford University Press, 1994.
[15] LEE Y K, LEE J W.Direct simulation of pumping characteristics for a model diffusion pump[J]. Vacuum, 1996, 47(3): 297-306.
[16] 赵长莲, 毛世峰, 刘鹏, 等. 喷嘴角度对水银扩散泵抽气性能影响的DSMC模拟研究[J]. 真空, 2020, 57(2): 8-12.
[17] SCANLON T J, ROOHI E, WHITE C, et al.An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries[J]. Computers & Fluids, 2010, 39(10): 2078-2089.
[18] 何立明, 赵罡, 程邦勤. 气体动力学[M]. 北京: 国防工业出版社, 2009.
[19] 赵长莲. 面向偏滤器粒子排出的水银扩散泵抽气性能的DSMC模拟研究[D]. 合肥: 中国科学技术大学, 2019.
[20] 张国孝, 耿立华. 多级扩散泵提高抽速方法的探讨[J]. 真空技术报导, 1974(5): 29-42.
[21] 李殿东, 柏树, 王建录, 等. 油扩散泵抽空机组对气体抽气速率选择性的分析[J]. 通用机械, 2004(6): 65-66, 74.
[1] 赵长莲, 毛世峰, 刘鹏, 覃世军, 余羿, 叶民友. 喷嘴角度对水银扩散泵抽气性能影响的DSMC模拟研究*[J]. 真空, 2020, 57(2): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[3] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[4] 宋青竹, 张哲魁, 孙足来, 鄂东梅. 大型钛合金熔铸技术——真空电弧凝壳精铸设备进展[J]. 真空, 2018, 55(5): 58 -61 .
[5] 阮庆东, 蒲世豪, 陈 常, 魏于苹. 一种新型高能离子注入系统的加速电源研制[J]. 真空, 2018, 55(6): 14 -18 .
[6] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45 -48 .
[7] 李忠仁, 明 悦, 朱一鸣. 电阻加热真空高温石墨化炉的功率计算[J]. 真空, 2018, 55(6): 73 -75 .
[8] 尹沙沙, 彭润玲, 韦 妍, 曹 蔚, 王 宁. 真空冷冻干燥法制备纳米二硫化钼的实验研究[J]. 真空, 2018, 55(6): 80 -83 .
[9] 陈 博, 杨 飞, 李建昌. 柔性薄膜材料疲劳失效研究[J]. 真空, 2019, 56(1): 20 -26 .
[10] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2019, 56(2): 78 -80 .