欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (2): 8-12.doi: 10.13385/j.cnki.vacuum.2020.02.02

• 真空获得与设备 • 上一篇    下一篇

喷嘴角度对水银扩散泵抽气性能影响的DSMC模拟研究*

赵长莲1, 毛世峰1*, 刘鹏2, 覃世军2, 余羿1, 叶民友1   

  1. 1.中国科学技术大学工程与应用物理系,安徽 合肥 230027;
    2.中国科学院等离子体物理研究所,安徽 合肥 230031
  • 收稿日期:2019-03-05 出版日期:2020-03-25 发布日期:2020-04-24
  • 通讯作者: 毛世峰,副教授。
  • 作者简介:赵长莲(1990-),男,山东省潍坊市人,硕士。
  • 基金资助:
    *国家重点研发计划(2017YFE0301501);合肥物质科学技术中心创新项目培育基金(2016FXCX009)

DSMC Simulation Study of Influence of Nozzle Angle on Pumping Performance of Mercury Diffusion Pump

ZHAO Chang-lian1, MAO Shi-feng1*, LIU Peng2, QIN Shi-jun2, YU Yi1, YE Min-you1   

  1. 1.Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230027, China;
    2.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2019-03-05 Online:2020-03-25 Published:2020-04-24

摘要: 扩散泵由于其大抽速、连续稳态工作的优点,有望应用于未来聚变堆的偏滤器抽气系统中,以降低目前托卡马克装置中广泛采用的捕集式低温泵所带来的高氚存储量问题。由于氚相容性的限制,目前的商业油扩散泵无法直接应用于聚变堆中,水银将是理想的扩散泵工作介质。为了支持未来聚变堆偏滤器抽气系统的水银扩散泵设计,需要针对水银扩散泵开展设计优化研究。本文采用直接模拟蒙特卡洛方法,基于KT-150扩散泵结构,研究了喷嘴角度对水银扩散泵的抽气速度及水银返流率的影响。结果表明喷嘴角度为45°时能够达到最佳的抽气速度1.53m3/s,同时返流率没有显著提升。

关键词: 偏滤器抽气, 直接模拟蒙特卡洛方法, 水银扩散泵, 抽速, 返流率

Abstract: Due to the high pumping speed and continuous steady state operation, the diffusion pump is expected to be applied in the divertor pumping system in future fusion reactor to reduce the high tritium inventory in the cryogenic pump, which are widely used in present tokamaks. Because the requirement of compatibility with tritium, the commercial oil diffusion pump can not be directly applied in the fusion reactor. Instead, the mercury will be the ideal working fluid. For the purpose to support the mercury diffusion pump design in the divertor pumping system of future fusion reactor, the optimization study of the mercury diffusion pump design is necessary. In this work, using the direct simulation Monte Carlo (DSMC) method, influence of the nozzle angle on the pumping speed and mercury backstreaming rate are simulated based on a KT-150 diffusion pump structure. The simulation results show that the largest pumping speed of~1.53m3/s is achieved when nozzle angle equals 45 degrees, while the backstreaming rate is not obviously increased.

Key words: divertor pumping, direct simulation Monte Carlo(DSMC), mercury diffusion pump, pumping speed, backstreaming rate

中图分类号: 

  • TB752+.3
[1] Hogan J.Helium transport and exhaust experiments in tokamaks[J]. Journal of nuclear materials, 1997, 241: 68-81.
[2] Hu Q S, Yao D M, Luo G N, et al.The first in-vessel cryopump for EAST divertor experiment[J]. Fusion Engineering and Design, 2010, 85(7-9): 1508-1512.
[3] Liu Y, Ding X T, Yang Q W, et al.Recent advances in the HL-2A tokamak experiments[J]. Nuclear fusion, 2005, 45(10): S239.
[4] Yang H L, Park Y M, Bae Y S, et al.Development of KSTAR in-vessel components and heating systems[J]. Fusion Engineering and Design, 2011, 86(6-8): 588-592.
[5] 李勇, 张志军, 邱银,等. HL-2M内置式低温泵基于DSMC方法的抽速计算[J]. 真空, 2016, 53(5):11-16.
[6] Day C, Giegerich T.The Direct Internal Recycling concept to simplify the fuel cycle of a fusion power plant[J]. Fusion Engineering and Design, 2013, 88(6-8): 616-620.
[7] Giegerich T, Day C.The KALPUREX-process-A new vacuum pumping process for exhaust gases in fusion power plants[J]. Fusion Engineering and Design, 2014, 89(7-8): 1476-1481.
[8] Peters B J, Hanke S, Day C.Metal Foil Pump performance aspects in view of the implementation of Direct Internal Recycling for future fusion fuel cycles[J]. Fusion Engineering and Design, 2018, 136: 1467-1471.
[9] Giegerich T, Day C.Conceptuation of a continuously working vacuum pump train for fusion power plants[J]. Fusion Engineering and Design, 2013,88(9-10):2206-2209.
[10] Abel B D, The TFTR vacuum system, Journal of Vacuum Science and Technology, 1978,15:726-733.
[11] Lee Y K, Lee J W.Direct simulation of pumping characteristics for a model diffusion pump[J]. Vacuum, 1996, 47(3):297-306.
[12] 于治明, 巴德纯, 杨乃恒. 直接模拟蒙特卡罗法及其在真空泵性能计算中的应用[J]. 真空, 2006, 43(1):9-14.
[13] Scanlon T J, Roohi E, White C, et al.An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries[J]. Computers & Fluids, 2010, 39(10): 2078-2089.
[14] White C, Borg M K, Scanlon T J, et al.dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver[J]. Computer Physics Communications, 2018,224:22-43.
[15] Bird. G A.Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M]. Oxford University Press, 1994.
[16] Bird G A.The DS2V/3V program suite for DSMC calculations[C]. AIP Conference Proceedings. AIP, 2005,762(1):541-546.
[17] 王晓冬, 吴虹阅, 张光利,等. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6):45-48.
[18] Dayton B B.The Speed of Oil and Mercury Diffusion Pumps for Hydrogen, Helium, and Deuterium[J]. Review of Scientific Instruments, 1948,19(11):793-804.
[19] Blears J, Hill R W.The Speeds of Diffusion Pumps for Gases of Low Molecular Weight[J]. Review of Scientific Instruments, 1948, 19(12):847-851.
[20] Liou W W, Fang Y C.Implicit boundary conditions for direct simulation Monte Carlo method in MEMS flow predictions[J]. Computer Modeling in Engineering & Sciences, 2000,1:119-128.
[1] 赵月帅, 孙立臣, 邵容平, 闫荣鑫, 孙 伟, 李 征. DN1250 液氮屏蔽型制冷机低温泵的研制与性能测试[J]. 真空, 2019, 56(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .