欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2019, Vol. 56 ›› Issue (6): 68-74.doi: 10.13385/j.cnki.vacuum.2019.06.13

Previous Articles     Next Articles

Research Status and Development of Additive/Subtractive Hybrid Manufacturing (A/SHM)

GAO Meng-qiu1,2,3, ZHAO Yu-hui1,2, ZHAO Ji-bin1,2, WANG Zhi-guo1,2, HE Zhen-feng1,2   

  1. 1. State Key Laboratory of Robotics,Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-09-02 Online:2019-11-25 Published:2019-12-03

Abstract: In recent years, additive/subtractive hybrid manufacturing (A/SHM) has become one of the main methods of intelligent manufacturing. It relies on additive manufacturing to realize material layer forming, using material reduction technology to improve surface quality and improve stress state. This technology takes into account the high precision of rapid prototyping and reduces material manufacturing for additive manufacturing. This paper first expounds the general situation of additive manufacturing technology and the overview of A/SHM. Then, the research on the surface residual stress and roughness of the materials in the process of A/SHM at home and abroad will be explained. Then the paper explains the research on theA/SHM of the equipment at home and abroad and the research on the surface quality of A/SHM. Finally, this paper summarizes and forecasts the main problems and future development trends of the A/SHM.

Key words: additive/subtractive hybrid manufacturing, equipment, residual stress, roughness

CLC Number: 

  • V261.8
[1] 安国进. 金属增材制造技术在航空航天领域的应用与展望[J].现代机械,2019(3):39-43.
[2] 郭东明,孙玉文,贾振元.高性能精密制造方法及其研究进展[J].机械工程学报,2014,50(11):119-134.
[3] Li L, Haghighi A, Yang Y R.Theoretical modelling and prediction of surface roughness for hybrid additive-subtractive manufacturing processes[J]. IISE Transactions,2019,51(2):124-135.
[4] 郭观林. 金属激光增减材复合工艺及整机结构CAE分析[D]. 长沙:湖南大学,2017.
[5] 招润焯,丁东红,王凯,等.金属增减材混合制造研究进展[J].电焊机,2019,49(7):66-77.
[6] Sames W J, List F A, Pannala S, Dehoff R R, Babu S S.The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews,2016,61(5):315-360.
[7] 陈双,吴甲民,史玉升.3D打印材料及其应用概述[J].物理,2018,47(11):715-724.
[8] Mazumder J, Dutta D, Kikuchi N,Ghosh A.Closed loop direct metal deposition: art to part[J]. Optics and Lasers in Engineering,2000,34(4):397-414.
[9] 王德花,马筱舒.需求引领创新驱动——3D打印发展现状及政策建议[J].中国科技产业,2014(8):46-53.
[10] 丁大为,杜秉明,林怡德.直接金属粉末激光成型异型水路在模具冷却系统中的应用[J]. 模具工业,2012,38(1):55-57.
[11] 钱应平,黄菊华,张海鸥.金属零件的直接无模近终成形技术[J].机械设计与制造,2007(11):121-123.
[12] Du W,Bai Q,Zhang B.A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts[J]. Procedia Manufacturing,2016,5:1018-1030.
[13] Weiss L E, Merz R, Prinz F B, et al.Shape Deposition Manufacturing of Heterogeneous Structures[J]. Journal of Manufacturing Systems, 1997,16(4):239-248.
[14] Akula S,Karunakaran K P.Hybrid adaptive layer manufacturing: An Intelligent art of direct metal rapid tooling process[J]. Robotics and Computer Integrated Manufacturing,2005,22(2):113-123.
[15] 张海鸥,熊新红,王桂兰,等.等离子熔积成形与铣削光整复合直接制造金属零件技术[J].中国机械工程,2005(20):1863-1866.
[16] 董一巍,赵奇,李晓琳.增减材复合加工的关键技术与发展[J].金属加工(冷加工),2016(13):7-12.
[17] Cheng X, Wei X T, Yang X H, et al. Unified criterion for brittle-ductile transition in mechanical microcutting of brittle materials[J].Journal of Manufacturing Science and Engineering,Transactions of the ASME,2014,136(5): 051013-1-8.
[18] HOPE R L, FACOBES P A, ROTH R N.Rapid prototyping with sloping surfaces[J]. Rapid Prototyping Journal, 1997,3(1):12-19.
[19] 张安峰,李涤尘,梁少端,等.高性能金属零件激光增材制造技术研究进展[J].航空制造技术,2016(22):16-22.
[20] Akula S,Karunakaran K P.Hybrid adaptive layer manufacturing:An Intelligent art of direct metal rapid tooling process[J].Robotics and Computer-Integrated Manufacturing,2006(22):113-123.
[21] 混合式加工解决方案将传统的CNC加工与工业3D打印完美结合于一体[J].智慧工厂,2017(8):38-40.
[22] 张曙. 增材制造和切削混合加工机床[J].机械制造与自动化,2015,44(6):1-7.
[23] 张军涛,张伟,李宇佳,等.基于DMG MORI LASERTEC 65 3D加工中心的不锈钢粉末激光沉积增/减材复合制造[J].粉末冶金材料科学与工程,2018,23(4):368-374.
[24] 廖文俊,胡捷.增材制造技术的现状和产业前景[J].装备机械,2015(1):1-7.
[25] 史玉升,张李超,白宇,等.3D打印技术的发展及其软件实现[J].中国科学:信息科学,2015,45(2):197-203.
[26] TAYLOR J B, CORMIER D R, JOSHI S, et al.Contoured edge slice generation inrapidprototypingvia5-axismachining[J].Robotics and Computer Integrated Manufacturing, 2001,17(1/2):13-18.
[27] 彭伟,王宝和,邵璟.增减材复合机床开发及应用研究项目[J].世界制造技术与装备市场,2018(4):47-50.
[28] 杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016(12):26-31.
[29] Salonitis K, Alvise L, Schoinochoritis B, et al.Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining[J]. International Journal of Advanced Manufacturing Technology 2016,85(9-12):2401-2411.
[30] 黄鑫. 钛合金增减材复合制造工艺研究[D].大连:大连理工大学,2017.
[31] 陈曦. SLM成型件铣削表面粗糙度预测模型及参数优化研究[D].武汉:武汉科技大学,2018.
[32] 李帅. 增减材复合制造钛合金铣削特性研究[D].大连:理工大学,2018.
[33] 章媛洁,宋波,赵晓,等.激光选区熔化增材与机加工复合制造AISI 420不锈钢:表面粗糙度与残余应力演变规律研究[J].机械工程学报,2018,54(13):170-178.
[34] 郭鹏. 激光增材制造不锈钢的力学性能和铣削性能研究[D].济南:山东大学,2017.
[35] 李青宇. 激光熔覆沉积与切削加工复合制造技术的发展与挑战[A]//中国机械工程学会特种加工分会、广东工业大学.第17届全国特种加工学术会议论文集(下册)[C].广州:中国机械工程学会特种加工分会、广东工业大学,2017:6293-298.
[1] WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84.
[2] PENG Run-ling, YIN Sha-sha, WEI Yan, LIU De-rong, WANG Ning. Preparation of Inorganic Nanopowders by Vacuum Freeze-drying [J]. VACUUM, 2019, 56(5): 77-84.
[3] YANG Hua-fei, YIN Shan-shan, LUO Gen-song, LIANG Yi-heng. Research and exploration on energy saving technology of mechanical vacuum pump [J]. VACUUM, 2019, 56(2): 37-40.
[4] WANG Chun-ming, ZHANG Ming-da, SU Yu-ping. Discussion on leak detection method of vacuum application equipment [J]. VACUUM, 2019, 56(1): 52-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .