欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (1): 26-30.doi: 10.13385/j.cnki.vacuum.2020.01.05

Previous Articles     Next Articles

Effect of RF Power Ratio on Properties of Nitrogen-Doped TiO2 Film

HU Jia-pei1,2, ZHANG Hua1, XU Hui-min1, CAO Qiang1, TANG Chao3, LIU Xu-jie1, LI Yan-feng1   

  1. 1.College of Mechanical Engineering, Anhui University of Science and Technology, Fengyang 233100, China;
    2.Wuhe County Vocational and Technical School, Bengbu 233300, China;
    3.Dongfeng Peugeot Citroen Automobile Company Ltd, Wuhan 430000, China
  • Received:2019-04-25 Online:2020-01-25 Published:2020-03-17

Abstract: This study mainly used RF coupled DC magnetron sputtering technology to prepare N-doped TiO2 thin films on glass substrates at room temperature with TiO2 ceramic targets. At the same time, the effects of different RF power ratios on the microstructure and optical properties of the films were investigated by optical profilometry, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-visible spectrophotometer. The experimental results show that, with the increase of RF power, the deposition rate of the film increases, the crystallinity of the film becomes better, the grain size becomes larger, the proportion of N doping increases, and the valence state of Ti shows incompletely oxidized Ti3+. The forbidden band width is also correspondingly reduced, and the absorption edge of the N-doped TiO2 film is extended to the visible light region.

Key words: TiO2 film, RF power ratio, DC coupling

CLC Number: 

  • TB34
[1] Grigorov K G, Oliveira I C, Maciel H S, et al.Cunha, Optical and morphological properties of N-doped TiO2 thin films[J]. Surf, Sci., 2011, 605(7-8): 775-782.
[2] Cabrera R Q, Vazquez C S, Darr J A, et al.Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation[J]. Appl. Catal. B Environ. 2014, (160-161): 582-588.
[3] Zhang J, Fu W, Xi J H, et al.N-doped rutile TiO2 nano-rods show tunable photocatalytic selectivity[J]. J. Alloy. Compd, 2013, 575: 40-47.
[4] Baker M A, Fakhouri H, Grilli R, et al.F. Arefi-Khonsari, Effect of total gas pressure and O2/N2 flow rate on the nanostructure of N-doped TiO2 thin films deposited by reactive sputtering[J]. Thin Solid Films, 2014, 552: 10-17.
[5] Guillen C, Montero J, Herrero J.Influence of N-doping and air annealing on the structural and optical properties of TiO2 thin films deposited by reactive DC sputtering at room temperature[J]. J. Alloy. Compd, 2015, 647: 498-506.
[6] Liu H L, Yao T T, Ding W Y, et al.Study on the optical property and surface morphology of N doped TiO2 film deposited with different N2 flow rates by DCPMS[J]. J. Environ. Sci., 2013, 25: 54-58.
[7] Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1992, 238(5358):37-38.
[8] Yamaki T, Sumita T, Yamamoto S.Formation of TiO2-xFx compounds in fluorine-implanted TiO2[J]. J. Mater. Sci, 2002,(21): 33-35.
[9] Umebayashi T, Yamaki T, Itoh H, et al.Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl. Phys. Lett, 2002(81): 454-456.
[10] Lee S H, Yamasue E, Okumura H, et al.Effect of substrate roughness and working pressure on photocatalyst of N-doped TiOx films prepared by reactive sputtering with air[J]. Appl. Sur. Sci, 2015(324): 339-348.
[11] Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001(293): 269-271.
[12] 梅乐夫, 梁开明. 氮掺杂TiO2薄膜光催化剂的制备[J]. 稀有金属材料与工程, 2009(38): 644-646.
[13] 丁万昱, 王华林, 巨英东, 等. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响[J]. 物理学报, 2011, 60(2): 728-735.
[14] Migita T, Kamei R, Tanaka T, et al.Effect of dc bias on the compositional ratio of WNx thin films prepared by rf-dc coupled magnetron sputtering[J]. Appl. Surf. Sci. 2012, (169-170): 362-365.
[15] Ding W Y, Xu J, Lu W Q, et al.The effect of N2 flow rate on discharge characteristics of microwave electron cyclotron resonance plasma[J]. Phys. Plasmas, 2009(16): 053502-053506.
[16] Liu B S, Wen L P, Zhao X J.The structure and photocatalytic studies of N doped TiO2 films prepared by radio frequency reactive magnetron sputtering[J]. Sol. Energy Mat. Sol. C, 2008(92):1-10.
[17] Wolff M, Schultze J W, Strehblow H H.Low-energy implantation and sputtering of TiO2 by nitrogen and argon and the electrochemical reoxidation[J]. Surf. Interf. Anal, 1991(17): 726-736.
[18] Saha N C, Tompkins H G.Titanium nitride oxidation chemistry:an xeray photoelectron spectroscopy study[J]. J. Appl. Phys, 1992(72): 3072-3079.
[19] Irie H, Watanabe Y, Hashimoto K.Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem. B, 2003(107): 5483-5486.
[20] Ryoji A, Takeshi M, Hiroshi I.Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst:designs, developments, and prospects[J]. Chem. Rev., 2014(114):9824-9852.
[21] Hagfeld A, Gratzel M.Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev, 1995(95): 49-68.
[22] 徐凌, 唐超群, 戴磊, 等, N掺杂锐钛矿TiO2电子结构的第一性原理研究[J]. 物理学报, 2007, 56(2): 1048-1053.
[23] 彭丽萍, 徐凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究[J]. 物理学报, 2007, 56(3): 1585-1589.
[1] ZHONG Zhao-jin, CAO Xin, GAO Qiang, HAN Na, CUI Jie-dong, SHI Li-fen, YAO Ting-ting, MA Li-yun, PENG Shou. Effect of RF sputtering power on properties of AZO thin films deposited at room temperature [J]. VACUUM, 2019, 56(1): 45-48.
[2] ZHANG Zi-xin, LIU Zhong-wei, YANG Li-zhen, CHEN Qiang. Study on Performance of Silicon-Based Nitride Phosphors Coated by Plasma-Assisted Atomic Layer Deposition [J]. VACUUM, 2019, 56(4): 19-23.
[3] FAN Qi-peng, HU Yu-lian, LIU Bo-wen, TIAN Xu, JIANG De-rong, LIU Zhong-wei. Deposition of Cobalt Carbide Films by Plasma Enhanced Atomic Layer Deposition [J]. VACUUM, 2019, 56(5): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .