欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (1): 83-87.doi: 10.13385/j.cnki.vacuum.2020.01.15

Previous Articles     Next Articles

Application Status and Prospect of Cladding Technology on Soil-engaging Components of Agricultural Machinery

LI Xiang, LAI You-bin, YANG Bo, WANG Dong-yang, SUN Ming-han, WU Hai-long,YUAN Ren-yue, SUN Shi-jie   

  1. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2019-09-02 Online:2020-01-25 Published:2020-03-17

Abstract: The service life of soil-engaging components for agricultural machinery was seriously shortened by the wear failure, which greatly affected the cost of agricultural production and restricted the development of agricultural mechanization. With its excellent performance, cladding technology has become an important means to improve the wear resistance of soil-engaging components of agricultural machinery. This paper briefly discussed the wear failure of soil-engaging components, the working principle and characteristics of cladding technology, and the application status of cladding technology on soil-engaging components for agricultural machinery. Finally, it provides relevant prospect.

Key words: cladding technology, soil-engaging components, wear resistance, wear failure

CLC Number: 

  • TG174
[1] 苏彬彬, 徐杨, 简建明. 农业机械耐磨件发展及研究现状[J]. 热处理技术与装备, 2013, 34(5):53-58.
[2] 吴志立, 赵建杰, 吴明亮, 等. 农机土壤工作部件耐磨强化研究进展[J]. 中国农机化学报, 2016, 37(8):256-264.
[3] 宋月鹏, 王伟, 高东升, 等. 基于表面工程技术制备农机刃具的研究现状[J]. 中国农机化学报, 2018, 39(1):27-31.
[4] 黄建洪, 刘东雨, 李凌云, 等. 农机零件的磨损、选材及热处理[M]. 北京:机械工业出版社. 2013.
[5] 葛宜元, 庄明辉, 张金波, 等. 典型表面工程技术在农机耕作部件上的应用现状[J]. 农机使用与维修, 2015(9):35-37.
[6] 张金波, 王晨超, 王洋, 等. 农业耕作机械触土部件土壤磨料磨损研究[J]. 现代化农业, 2015(1):52-53.
[7] 李庆达, 郭建永, 胡军, 等. 土壤耕作部件耐磨减阻处理的研究现状[J]. 表面技术, 2017, 46(2):119-126.
[8] 翟鹏飞. 耕作部件表面熔覆硬质合金工艺及其耐磨性的研究[D]. 晋中:山西农业大学, 2013.
[9] Zhang D K, Xue H B, Wang K H, et al.Effect of Y2O3 on Microstructure and Properties of Fe-Al-Si-B Cladding by Plasma Transferred Arc[J]. Rare Metal Materials and Engineering, 2018, 47(2): 469-473.
[10] 贾洪雷, 王万鹏, 陈志, 等. 农业机械触土部件优化研究现状与展望[J]. 农业机械学报, 2017, 48(7):1-13.
[11] 唐琳琳, 罗辉, 张元彬. 表面熔覆技术的研究进展[J]. 热加工工艺, 2009, 38(20):86-89+145.
[12] Gu, Meiners, Wissenbach, Poprawe.Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
[13] Zhong M, Liu W.Laser surface cladding:the state of the art and challenges[J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(C5): 1041-1060.
[14] Zhang Z H, Wang X, Zhang Q Q, et al.Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding[J]. Optics and Laser Technology, 2019, 119: 1-9.
[15] Cao L L, Xia Y Z, Cui H Z, et al.Microstructural characteristics of TiB2-TiC-NiAl composite coatings via Plasma Cladding Process[J]. Surface Engineering, 2019, 35(11): 997-1002.
[16] Zhang X J, Cui H Z, Wang J F, et al.Effects of TiB2 +TiC content on microstructure and wear resistance of Ni55-based composite coatings produced by plasma cladding[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 132-142.
[17] 苏科勇, 张明, 王文慧, 等. 真空熔覆WC颗粒增强镍基合金涂层的组织与性能[J]. 材料保护, 2018, 51(11):80-83.
[18] Liu H P, Sun F, Cheng S L, et al.Fabrication of Ni60+25%WC reinforced steel matrix surface composites by induction cladding[J]. IOP Conference Series:Materials Science and Engineering, 2019, 542(1): 1-5.
[19] Tao X.P, Zhang S, Wu C. L, et al. In situ synthesised WC-reinforced Co-based alloy layer by vacuum cladding[J]. Surface Engineering, 2018, 34(4): 316-323.
[20] 黄思语, 王水波. 感应熔覆制备镍基合金涂层的研究进展[J]. 表面技术, 2017, 46(09):39-47.
[21] 孟君晟. 氩弧熔覆TiB2+TiN/Ni涂层的微观结构与摩擦学行为[D].哈尔滨: 哈尔滨理工大学, 2016.
[22] Sibisi P N, Popoola A P I, Kanyane LR, et al. Microstructure and Microhardness Characteriza-tion of Cp-Ti/SiAlON Composite Coatings on Ti-6Al-4V by laser cladding[J]. Procedia Manufacturing, 2019, 35: 272-277.
[23] Li Y X, Su K Q, Bai P K, et al.Effect of TiBCN Content on Microstructure and Properties of Laser Cladding Ti/TiBCN Composite Coatings[J]. Metals and Materials International, 2019, 25(5): 1366-1377.
[24] 丁紫阳, 马宗彬, 黎文强, 等. 激光熔覆Fe基合金粉末熔覆层的组织及性能研究[J]. 热加工工艺, 2019(18):100-102+107.
[25] 赵华洋, 付宇明, 郑丽娟, 等. 激光熔覆复相自润滑涂层的性能研究[J]. 热加工工艺, 2019(18):103-107.
[26] 屈平. PTA原位合成Ti(C, N)/金属复合涂层研究[D]. 保定: 河北农业大学, 2015.
[27] 田永财, 王宏立. 旋耕刀表面激光熔覆铁基涂层的组织性状及耐磨性[J]. 江苏农业科学, 2016, 44(11):359-362.
[28] 闫勇. 深松铲尖表面激光熔覆强化试验研究[D]. 大庆: 黑龙江八一农垦大学, 2019.
[29] 陈希章, 胡科, 袁其兵. 激光熔敷原位合成WC增强铁基复合涂层的组织和性能[J]. 中国表面工程, 2016, 29(4):118-124.
[30] 封学志, 赵明, 曹梅青. Q235钢等离子熔覆Fe基ZrB2-ZrC复合涂层的组织与性能研究[J]. 热加工工艺, 2019(16):106-110+115.
[31] 来佑彬, 王冬阳, 杨波, 等. 工艺参数对钴基合金等离子熔覆残余应力的影响[J]. 表面技术, 2019, 48(6):314-321.
[32] 韩照坤. 深松铲等离子熔覆镍基复合涂层耐磨性研究[D]. 保定: 河北农业大学, 2015.
[33] 屈平, 马跃进, 李建昌, 等. 铝热剂法原位合成农机刀具Al2O3-Ti(C, N)复合涂层组织结构及性能[J]. 农业工程学报, 2016, 32(6):65-72.
[34] 惠泷, 崔洪芝, 宋晓杰, 等. 等离子熔覆ZrB2-ZrC/Fe复合涂层组织及耐磨性[J]. 复合材料学报, 2017, 34(11):2500-2508.
[35] 王珂, 崔洪芝, 魏娜, 等. 等离子熔覆TiB2长条+TiC颗粒多尺度复合强化陶瓷涂层[J]. 材料热处理学报, 2015, 36(6):174-180.
[36] Zhou Y X, Zhang J, Xing Z G, et al.Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron[J]. Surface & Coatings Technology, 2019, 361: 270-279.
[37] Lyu Y Z, Sun Y F, Jing F Y.On the microstructure and wear resistance of Fe-based composite coatings processed by plasma cladding with B4C injection[J]. Ceramics International, 2015, 41(9): 10934-10939.
[38] Meng J S, Shi X P, Zhang S J, et al.Friction and wear properties of TiN-TiB2-Ni based composite coatings by argon arc cladding technology[J]. Surface & Coatings Technology, 2019, 374: 437-447.
[39] 马壮, 刘聪, 董世知, 等. Al2O3对氩弧熔覆Fe-Si金属间化合物涂层组织及性能的影响[J]. 材料保护, 2019, 52(5):34-39.
[40] 徐忠蕾, 尹桂丽, 张俊涛, 等. 钨极氩弧熔覆原位合成颗粒增强铁基复合涂层组织及耐磨性的研究[J]. 热加工工艺, 2018, 47(24):112-114+118.
[41] 郝建军, 马跃进, 黄继华, 等. 氩弧熔覆Ni60A耐磨层在农机刀具上的应用[J]. 农业工程学报, 2005(11):81-84.
[42] 王海淞, 马跃进, 李建昌, 等. 深松铲氩弧熔覆TiC/Ni复合涂层组织和性能研究[J]. 热加工工艺, 2016, 45(14):127-129+132.
[1] WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .