VACUUM ›› 2020, Vol. 57 ›› Issue (1): 83-87.doi: 10.13385/j.cnki.vacuum.2020.01.15
Previous Articles Next Articles
LI Xiang, LAI You-bin, YANG Bo, WANG Dong-yang, SUN Ming-han, WU Hai-long,YUAN Ren-yue, SUN Shi-jie
CLC Number:
[1] 苏彬彬, 徐杨, 简建明. 农业机械耐磨件发展及研究现状[J]. 热处理技术与装备, 2013, 34(5):53-58. [2] 吴志立, 赵建杰, 吴明亮, 等. 农机土壤工作部件耐磨强化研究进展[J]. 中国农机化学报, 2016, 37(8):256-264. [3] 宋月鹏, 王伟, 高东升, 等. 基于表面工程技术制备农机刃具的研究现状[J]. 中国农机化学报, 2018, 39(1):27-31. [4] 黄建洪, 刘东雨, 李凌云, 等. 农机零件的磨损、选材及热处理[M]. 北京:机械工业出版社. 2013. [5] 葛宜元, 庄明辉, 张金波, 等. 典型表面工程技术在农机耕作部件上的应用现状[J]. 农机使用与维修, 2015(9):35-37. [6] 张金波, 王晨超, 王洋, 等. 农业耕作机械触土部件土壤磨料磨损研究[J]. 现代化农业, 2015(1):52-53. [7] 李庆达, 郭建永, 胡军, 等. 土壤耕作部件耐磨减阻处理的研究现状[J]. 表面技术, 2017, 46(2):119-126. [8] 翟鹏飞. 耕作部件表面熔覆硬质合金工艺及其耐磨性的研究[D]. 晋中:山西农业大学, 2013. [9] Zhang D K, Xue H B, Wang K H, et al.Effect of Y2O3 on Microstructure and Properties of Fe-Al-Si-B Cladding by Plasma Transferred Arc[J]. Rare Metal Materials and Engineering, 2018, 47(2): 469-473. [10] 贾洪雷, 王万鹏, 陈志, 等. 农业机械触土部件优化研究现状与展望[J]. 农业机械学报, 2017, 48(7):1-13. [11] 唐琳琳, 罗辉, 张元彬. 表面熔覆技术的研究进展[J]. 热加工工艺, 2009, 38(20):86-89+145. [12] Gu, Meiners, Wissenbach, Poprawe.Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164. [13] Zhong M, Liu W.Laser surface cladding:the state of the art and challenges[J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(C5): 1041-1060. [14] Zhang Z H, Wang X, Zhang Q Q, et al.Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding[J]. Optics and Laser Technology, 2019, 119: 1-9. [15] Cao L L, Xia Y Z, Cui H Z, et al.Microstructural characteristics of TiB2-TiC-NiAl composite coatings via Plasma Cladding Process[J]. Surface Engineering, 2019, 35(11): 997-1002. [16] Zhang X J, Cui H Z, Wang J F, et al.Effects of TiB2 +TiC content on microstructure and wear resistance of Ni55-based composite coatings produced by plasma cladding[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 132-142. [17] 苏科勇, 张明, 王文慧, 等. 真空熔覆WC颗粒增强镍基合金涂层的组织与性能[J]. 材料保护, 2018, 51(11):80-83. [18] Liu H P, Sun F, Cheng S L, et al.Fabrication of Ni60+25%WC reinforced steel matrix surface composites by induction cladding[J]. IOP Conference Series:Materials Science and Engineering, 2019, 542(1): 1-5. [19] Tao X.P, Zhang S, Wu C. L, et al. In situ synthesised WC-reinforced Co-based alloy layer by vacuum cladding[J]. Surface Engineering, 2018, 34(4): 316-323. [20] 黄思语, 王水波. 感应熔覆制备镍基合金涂层的研究进展[J]. 表面技术, 2017, 46(09):39-47. [21] 孟君晟. 氩弧熔覆TiB2+TiN/Ni涂层的微观结构与摩擦学行为[D].哈尔滨: 哈尔滨理工大学, 2016. [22] Sibisi P N, Popoola A P I, Kanyane LR, et al. Microstructure and Microhardness Characteriza-tion of Cp-Ti/SiAlON Composite Coatings on Ti-6Al-4V by laser cladding[J]. Procedia Manufacturing, 2019, 35: 272-277. [23] Li Y X, Su K Q, Bai P K, et al.Effect of TiBCN Content on Microstructure and Properties of Laser Cladding Ti/TiBCN Composite Coatings[J]. Metals and Materials International, 2019, 25(5): 1366-1377. [24] 丁紫阳, 马宗彬, 黎文强, 等. 激光熔覆Fe基合金粉末熔覆层的组织及性能研究[J]. 热加工工艺, 2019(18):100-102+107. [25] 赵华洋, 付宇明, 郑丽娟, 等. 激光熔覆复相自润滑涂层的性能研究[J]. 热加工工艺, 2019(18):103-107. [26] 屈平. PTA原位合成Ti(C, N)/金属复合涂层研究[D]. 保定: 河北农业大学, 2015. [27] 田永财, 王宏立. 旋耕刀表面激光熔覆铁基涂层的组织性状及耐磨性[J]. 江苏农业科学, 2016, 44(11):359-362. [28] 闫勇. 深松铲尖表面激光熔覆强化试验研究[D]. 大庆: 黑龙江八一农垦大学, 2019. [29] 陈希章, 胡科, 袁其兵. 激光熔敷原位合成WC增强铁基复合涂层的组织和性能[J]. 中国表面工程, 2016, 29(4):118-124. [30] 封学志, 赵明, 曹梅青. Q235钢等离子熔覆Fe基ZrB2-ZrC复合涂层的组织与性能研究[J]. 热加工工艺, 2019(16):106-110+115. [31] 来佑彬, 王冬阳, 杨波, 等. 工艺参数对钴基合金等离子熔覆残余应力的影响[J]. 表面技术, 2019, 48(6):314-321. [32] 韩照坤. 深松铲等离子熔覆镍基复合涂层耐磨性研究[D]. 保定: 河北农业大学, 2015. [33] 屈平, 马跃进, 李建昌, 等. 铝热剂法原位合成农机刀具Al2O3-Ti(C, N)复合涂层组织结构及性能[J]. 农业工程学报, 2016, 32(6):65-72. [34] 惠泷, 崔洪芝, 宋晓杰, 等. 等离子熔覆ZrB2-ZrC/Fe复合涂层组织及耐磨性[J]. 复合材料学报, 2017, 34(11):2500-2508. [35] 王珂, 崔洪芝, 魏娜, 等. 等离子熔覆TiB2长条+TiC颗粒多尺度复合强化陶瓷涂层[J]. 材料热处理学报, 2015, 36(6):174-180. [36] Zhou Y X, Zhang J, Xing Z G, et al.Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron[J]. Surface & Coatings Technology, 2019, 361: 270-279. [37] Lyu Y Z, Sun Y F, Jing F Y.On the microstructure and wear resistance of Fe-based composite coatings processed by plasma cladding with B4C injection[J]. Ceramics International, 2015, 41(9): 10934-10939. [38] Meng J S, Shi X P, Zhang S J, et al.Friction and wear properties of TiN-TiB2-Ni based composite coatings by argon arc cladding technology[J]. Surface & Coatings Technology, 2019, 374: 437-447. [39] 马壮, 刘聪, 董世知, 等. Al2O3对氩弧熔覆Fe-Si金属间化合物涂层组织及性能的影响[J]. 材料保护, 2019, 52(5):34-39. [40] 徐忠蕾, 尹桂丽, 张俊涛, 等. 钨极氩弧熔覆原位合成颗粒增强铁基复合涂层组织及耐磨性的研究[J]. 热加工工艺, 2018, 47(24):112-114+118. [41] 郝建军, 马跃进, 黄继华, 等. 氩弧熔覆Ni60A耐磨层在农机刀具上的应用[J]. 农业工程学报, 2005(11):81-84. [42] 王海淞, 马跃进, 李建昌, 等. 深松铲氩弧熔覆TiC/Ni复合涂层组织和性能研究[J]. 热加工工艺, 2016, 45(14):127-129+132. |
[1] | WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35. |
|