欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (3): 80-83.doi: 10.13385/j.cnki.vacuum.2020.03.16

• 3D Printing Technology • Previous Articles     Next Articles

Research on Partition Adaptive Process Adjustment Algorithm in Rapid Prototyping Technology

TIAN Tong-tong1,2, LI Lun1,2, ZHOU Bo1,2, ZHAO Ji-bin1,2   

  1. 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2019-09-02 Published:2020-06-18

Abstract: There are deformation and even cracking caused by excessive internal stress in the process of additive manufacturing of laser rapid prototyping technology. In order to solve the shortcomings, a partition adaptive process adjustment algorithm is proposed from the perspective of controlling the processing path, and the whole model is processed into groups. The processing path of each group needs to be generated in real time. The generation is based on the average height value of the sub-region of the previous set of formed surfaces, and the adaptive relationship between the average height value of the sub-area and the filling interval of its corresponding area is established. Finally, the C++ language is used. The algorithm is implemented by programming, and the simulation is carried out. According to the average height value of each sub-area, the corresponding filling pitch is obtained, and the correctness of the algorithm is verified.

Key words: laser rapid format, deformation, groups, path, average height, filling interval

CLC Number: 

  • TP391
[1] Griffith M L, Keicher D M, Atwood C L.Free form fabrication of metallic components using laser engineered net shaping(LENS{trademark)[J]. Office of Scientific & Technical Information Technical Reports, 1996(7): 125-132.
[2] Daekeon A, Jin H K, Soonman K.Representation of surface roughness in fused deposition modeling[J]. Journal of Materials Processing Technology, 2009, 209(15): 5593-5600.
[3] 赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5): 675-693.
[4] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45(9): 1111-1126.
[5] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
[6] 杜畅, 张津, 连勇, 等. 激光增材制造残余应力研究现状[J]. 表面技术, 2019, 48(1): 213-220.
[7] 许中明, 王鸿博, 杨亘. 几何参数对3D打印零件轮廓精度影响的研究[J]. 机械设计与制造, 2017(5): 113-115.
[8] 闫占功, 林峰, 齐海波. 直接金属快速成形制造技术综述[J]. 机械工程学报, 2005, 41(11): 1-7.
[9] 孙福臻, 曲文峰, 杨立宁, 等. 同步送粉式激光熔覆过程温度场数值模拟[J]. 机械设计与制造, 2017(10): 126-128.
[10] 宋建丽, 邓琦林, 葛志军, 等. 镍基合金激光快速成形裂纹控制技术[J]. 上海交通大学学报, 2006, 40(3): 548-552.
[11] 孙登广, 戴宁, 黄仁凯, 等. 轻量化蜂窝3D打印路径自适应生成技术[J]. 计算机集成制造系统, 2018, 24(8): 1902-1909.
[12] 李仲阳, 谢存禧. CAD模型截面的Voronoi图生成与分层面的等距线填充[J]. 计算机工程与应用, 2002, 38(2): 86-88.
[13] 蔡道生, 史玉升, 黄树槐. 快速成形技术中轮廓环的分组算法及其应用[J]. 华中科技大学学报(自然科学版), 2004, 32(1): 7-9.
[14] 王东兴, 郭东明, 贾振元. 面向快速原形制造的彩色模型数字表述方法[J]. 机械设计与研究, 2002, 18(2): 62-63.
[15] 卞宏友, 刘伟军, 王天然. 激光金属沉积成形的扫描方式[J]. 机械工程学报, 2006, 42(10): 170-175.
[16] 黄小毛, 叶春生, 黄伟军. 激光快速成形正多边形格子扫描路径的生成算法[J]. 锻压技术, 2013, 38(3): 152-155.
[1] ZHAO Ji-bin, LI Lun, ZHOU Bo, TIAN Tong-tong. Direction-parallel Filling Trajectory Generation Method for Sliced Profile in Additive Manufacturing [J]. VACUUM, 2020, 57(3): 89-93.
[2] SUN Zhi-ming, HE Chao, ZHANG Ying-li, ZHU Zhi-peng, YUE Xiang-ji, ZHANG Bin, BA De-chun. Design and finite element analysis of large-scale horizontal vacuum container [J]. VACUUM, 2019, 56(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .