欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (4): 1-5.doi: 10.13385/j.cnki.vacuum.2020.04.01

• Thin Film •     Next Articles

GDOES Depth Resolution Analysis of Flexible Functional Film

ZHOU Gang1, LV Kai1, LIU Yuan-peng2, YU Yun-peng1, XU Cong-kang1, WANG Jiang-yong1   

  1. 1. Department of Physics, Shantou University, Shantou 515063, China;
    2. Shantou Wanshun New Material Group Co. Ltd, Shantou 515078, China
  • Received:2019-08-08 Online:2020-07-25 Published:2020-07-23

Abstract: In this paper, it shows firstly that the Pulsed-RF-GDOES (Pulsed-Radio-Frequency-Glow Discharge Optical Emission Spectrometry) depth profiling could reach one nanometer depth resolution as demonstrated by measuring the native SiO2 layer thickness on the Si(111) substrate. A flexible optical functional film contained an Ag sublayer was characterized by atomic force microscope and spectrophotometer. Finally, the as-measured Ag Pulsed-RF-GDOES depth profiles were evaluated quantitatively using the MRI (atomic Mixing-Roughness-Information depth) model so that the depth resolution values are obtained with different measuring conditions. To this end, the optimum working conditions of the Pulsed-RF-GDOES are determined accordingly. The current study provides a useful guidance for obtaining high resolution depth profile for the flexible functional films.

Key words: flexible functional film, pulsed-RF-GDOES, MRI, depth resolution

CLC Number: 

  • TB303
[1] Marcus R K, Broekaert J A C. Glow Discharge Plasmas in Analytical Spectroscopy[J]. Trends in Analytical Chemistry, 2003, 22(3):186-186.
[2] 史玉涛, 李小佳, 王海舟. 镀锡钢板辉光放电发射光谱法定量深度分析研究[J]. 冶金分析, 2007, 27(2):1-7.
[3] 刘洁. 辉光放电光谱技术及其应用[J]. 河北冶金, 2015(2):67-70.
[4] 余兴. 辉光放电光谱分析技术的应用进展[J]. 冶金分析, 2016, 29(2):7-21.
[5] Tortora L, Urbini M, Fabbri A, et al.Three-dimensional characterization of OTFT on modified hydrophobic flexible polymeric substrate by low energy Cs +, ion sputtering[J]. Applied Surface Science, 2018, 448:628-635.
[6] 唐雷钧, 潘梦瑜. 集成电路TEM分析的制样技术[J]. 电子显微学报, 1995, (6):459-462.
[7] 梁家伟,林晓琪,毕焰枫,等. 不同工作参数下Ni/Ag双层膜GDOES深度谱的比较[J]. 真空, 2018, 55(2): 5-9.
[8] 张加民. 辉光放电光谱仪及其在表面分析中的应用[J]. 表面技术, 2003, 32(6):63-66.
[9] 梁家伟, 韩逸山, 庄素娜, 等. 辉光放电发射光谱在材料成分-深度分析中的应用[J]. 真空, 2017, (5): 39-46.
[10] Lian S Y, Kim K J, Kim T G, et al.Prediction and experimental determination of the layer thickness in SIMSdepth profiling of Ge/Si multilayers:Effect of preferential sputtering and atomic mixing[J]. Applied Surface Science, 2019, 481:1103-1108.
[11] 袁效东, 马建平, 张先明, 等. 不同特性黏度PET切片的制备及加工特性研究[J]. 浙江理工大学学报(自然科学版), 2017, (2): 208-213.
[12] 刘毅, 王江涌. 溅射深度剖析的定量分析及其应用[J]. 真空, 2012, 49(2):71-76.
[13] 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2):3-24.
[14] 康红利, 劳珏斌, 刘毅, 等. SIMS溅射深度剖析的定量分析[J]. 真空, 2015, 52(2): 44-49.
[15] Hofmann S.Atomic mixing, surface roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and Interface Analysis, 1994, 21(9):673-678.
[16] Hofmann S.From depth resolution to depth resolution function:refinement of the concept for delta layers, single layers and multilayers[J]. Surface & Interface Analysis, 2015, 27(9):825-834.
[17] Ziegler J F, Ziegler M D, Biersack J P.SRIM—the stopping and range of ions in matter[J]. Nuclear Inst & Methods in Physics Research B, 2008, 268(11):1818-1823.
[18] NIST. NIST Electron EAL Database SRD 82, [EB/OL]. [2009]. http://dx. doi. org//10.18434/T4MK5P.
[19] Liu Y, Yu W H, Wang J Y.A model for quantification of GDOES depth profiles[J]. Vacuum, 2015, 113:5-10.
[20] Wang J Y, Hofmann S, Zalar A, et al.Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J].Thin Solid Films,2003,444(1-2):120-124.
[1] MA Jia-jie, LI Jian-chang, CHEN Bo. Latest studies on memristor's integration and application [J]. VACUUM, 2018, 55(5): 71-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .