欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (4): 6-11.doi: 10.13385/j.cnki.vacuum.2021.04.02

• Thin Film • Previous Articles     Next Articles

Quantitative Analysis of AES Depth Profiles for Ni/Cr Multilayered Film by Genetic Algorithms

LI Jing1, TAN Zhang-hua2, LIU Xing-xing1, CHEN Ying-lin1, LI Hao-wen2, YANG Hao3, WANG Chang-lin2, WANG Jiang-yong1, XU Cong-kang1   

  1. 1. Department of Physics,Shantou University,Shantou 515063,China;
    2. Department of Mathematics,Shantou University,Shantou 515063,China;
    3. Department of Chemistry,Shantou University,Shantou 515063,China
  • Received:2020-09-15 Online:2021-07-25 Published:2021-08-05

Abstract: The measured AES depth profiles of Ni/Cr multilayer with rotational and stationary modes are quantified by convolution and deconvolution methods with the TV-Tikhonov and the genetic algorithms in the framework of the MRI(atomic Mixing-Roughness-Information depth)model. The interfacial roughness values are obtained accordingly and the reconstructed layer structure is well agreed with the HR-TEM measurement.

Key words: Ni/Cr multilayer film, quantification of depth profile, MRI model, genetic algorithm, TV-Tikhonov regularization method, convolution, deconvolution

CLC Number: 

  • TB303
[1] BOLELLI G, COLELLA A, LUSVARGHI L, et al. TiC-NiCr thermal spray coatings as an alternative to WC-CoCr and Cr3C2-NiCr[J]. Wear, 2020, 450-451(6): 203-273.
[2] BELI LI, POŽUN K, REMŠKAR M. AES, AFM and TEM studies of NiCr thin films for capacitive humidity sensors[J]. Thin Solid Films, 1998, 317(1-2): 173-177.
[3] AKAZI I H, WILD P M, MOORE T N, et al.The electromechanical behavior of nichrome(80/20wt.%)film[J]. Thin Solid Films, 2003, 433(1-2): 337-34.
[4] HOFMANN S.Atomic mixing, surface roughness and information depth in high resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and Interface Analysis, 1994, 21(9): 673-678.
[5] KIRCHHOFF W H, CHAMBERS G P, FINE J.An analytical expression for describing Auger sputter depth profile shapes of interfaces[J]. Vac.Sci.Technol, 1986, A4: 1666-1670.
[6] KIRCHHOFF W H.Logistic function profile fit: a least-squares program for fitting interface profiles to an extended logistic function[J]. Vac.Sci.Technol, 2012, A30: 051-101.
[7] DOWSETT M G, BARLOW R D, ALLEN P N.Secondary ion mass spectrometry analysis of ultrathin impurity layers in semiconductors and their use in quantification, instrumental assessment, and fundamental measurements[J]. Vac.Sci.Technol, 1994, B12: 186-198.
[8] DOWSETT M G, ROWLANDS G, BARLOW R D, et al.An analytic form for the SIMS response function measured form ultra-thin impurity layers[J]. Surface and Interface Analysis, 1994, 21: 310-315.
[9] HOFMANN S.Compositional depth profiling by sputtering[J]. Prog.Surf.Sci, 1991, 36: 35-87.
[10] HOFMANN S.Cascade mixing limitations in sputter profiling[J]. Vac.Sci.Technol, 1992, B10: 316-322.
[11] HOFMANN S.Sputter depth profiling: past, present, and future[J]. Surface and Interface Analysis, 2014, 46(10-11): 654-662.
[12] 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24.
[13] 刘毅, 王江涌. 择优溅射对深度剖析谱和深度分辨率的影响[J]. 真空, 2013(1): 22-26.
[14] HOFMANN S, LIU Y, WANG J Y, et al.Analytical and numerical depth resolution function in sputter profiling[J]. Applied Surface Science, 2014, 314(30): 942-955.
[15] HOFMANN S.Ultimate depth resolution and profile reconstruction in sputter profiling with AES and SIMS[J]. Surface and Interface Analysis, 2000, 30(1): 228-236.
[16] HO P S, LEWIS J E.Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.
[17] LIAN S Y, WANG Z J, WANG C L, et al.Deconvolution method for obtaining directly the original in-depth, distribution of composition from measured sputter depth profile[J]. Vacuum, 2019, 166(5): 196-200.
[18] KOVA J, ZALAR A, PRABELIEK B. Quantification of AES depth profiles by the MRI model[J]. Applied Surface Science, 2003, 207(1-4): 128-134.
[19] ZALAR A, PRAEK B, PANJAN P. Effects of surface structure on depth resolution of AES depth profiles of Ni/Cr multilayers[J]. Surface and Interface Analysis, 2000, 30(1): 247-250.
[1] GAO Peng, BAN Chao, REN Shao-peng, JIN Xiu, WANG Zhong-lian, YANG Wen-hua. An Optimization for Optical Coating Design Based on Genetic Algorithm [J]. VACUUM, 2021, 58(2): 27-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .