欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (4): 49-53.doi: 10.13385/j.cnki.vacuum.2021.04.09

• Vacuum Acquisition System • Previous Articles     Next Articles

Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel

QI Da-wei1, LI Wei-hua2, LI Chuan-xu2, WU Bin1, CHEN De-jiang1, TANG Zhi-gong1   

  1. 1. Hypersonic Aerodynamics Institute of China Aerodynamics Research and Development Center,Mianyang 621000, China;
    2. Chengdu Huaxi Chemical Technology Co., Ltd, Chengdu 610000, China
  • Received:2021-01-20 Online:2021-07-25 Published:2021-08-05

Abstract: Someone large wind tunnel test with high gas temperature and large flow requires for better vacuum exhaust equipment, and the traditional wind tunnel exhaust equipment cannot meet the requirements. To achieve the purpose of reducing the scale and cost, the first large displacement, high speed centrifugal vacuum pump was applied to the wind tunnel test equipment. In this paper, the pneumatic structure of centrifugal vacuum pump is designed according to the exhaust requirement of wind tunnel test. Using three-dimensional numerical simulation software to simulate the internal flow of centrifugal pump, in order to give full consideration to the asymmetry of the internal flow of centrifugal pump, the flow characteristics of rotor of the centrifugal pump the whole channel simulation analysis. The results show that the design of centrifugal pump flow, the ultimate vacuum and other indexes meet the design requirements, which is verified in actual work and better complete the wind tunnel test for vacuum exhaust security work.

Key words: wind tunnel, exhaust equipment, centrifugal vacuum pump, pneumatic structure, internal flow

CLC Number: 

  • TB752+.24
[1] HO S Y, PAULL A.Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test[J].Aerospace Science and Technology, 2006, 10(5): 420-426.
[2] 周华,韩莹. 高超音速地面模拟设备的研究进展[J]. 飞行力学, 1999, 17(4): 6-10.
[3] 蒲旭阳, 刘伟雄, 李向东, 等. 抽吸排气式高焓风洞应用实验研究[J]. 推进技术, 2018, 39(2): 450-455.
[4] 王尚锦. 离心压缩机三元流动理论及应用[M]. 西安: 西安交通大学出版社, 1991.
[5] CAME P M, ROBINSON C J.Centrifugal compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 213(2): 139-155.
[6] JEFFREY M J, WALKER S T, KUZDZAL M J. Rotordynamic stability measurement during full-load,full-pressure testing of a6000 psi reinjection centrifugal compressor[C/OL]//Texas A&M University, Turbomachinery Laboratories. Proceedings of the 31th Turbomachinery Symposium, 2002[2002]. https://oaktrust.library.tamu.edu/handle/1969.1/163317.
[7] PETRY N, BENRA F K, KOENIG S. Experimental study of acoustic resonances in the side cavities of a high-pressure centrifugal compressor excited by rotor/stator interaction[C/OL]//ASME. Proceedings of the ASME Turbo Expo2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C, 2010[2010-12-22]. https://doi.org/10.1115/GT2010-22054.
[8] STEGLICH T, KITZINGER J, SEUME J R, et al.Improved diffuser/volute combinations for centrifugal compressors[J]. Journal of Turbomachinery, 2008, 130(1): 011014.
[9] 李廷宾, 闻苏平, 汪志远, 等.单级跨音速离心压缩机叶片扩压器和不同蜗壳形式耦合的内部流动数值研究[J]. 流体机械, 2009, 37(7): 13-17+7.
[10] 杨策, 马朝臣, 王憔, 等. 离心压气机的初步设计及其优化方法[J]. 内燃机学报, 2001,19(5): 454-458.
[11] 李佳, 李健. 离心真空泵的气动设计探讨[J]. 真空与低温,2013, 19(4): 214-218.
[12] 张玉珠, 齐智勇. 3万8空分单轴悬臂多级离心压缩机的研制[J]. 风机技术, 2011(6): 22-25.
[13] 易洪进, 曲岳坤. 超大型渣油加氢装置循环氢压缩机研制[J]. 中文科技期刊数据库工业A, 2019, 12(11): 301-303.
[14] 易洪进, 曲岳坤. 3万空分增压机组改造[J]. 中文科技期刊数据库(全文版)工程技术, 2020, 08(5): 147-148.
[15] 王琦, 单鹏. 径流及斜流压气机任意曲面叶型长短叶片的造型设计方法[J]. 航空动力学报, 2006, 21(4): 747-753.
[16] 王琦, 单鹏. 离心压气机通流造型CFD 参数优化设计集成反问题方法[J]. 航空动力学报, 2007, 22(2):291-297.
[1] E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .