欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (4): 81-86.doi: 10.13385/j.cnki.vacuum.2021.04.15

• Vacuum Technology Application • Previous Articles     Next Articles

Effect of Crack in Micrometer Scale on the Water-cooled Oxygen-free Copper Crucible

YANG Guang1, LIU Huan1, WANG Ding-ding1, LUO Li-ping1, LV Xu-ming1, QI Yang2   

  1. 1. Laser Technology Institute, Research Institute of Physics and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
    2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2020-07-07 Online:2021-07-25 Published:2021-08-05

Abstract: Electron beam-physical vapor deposition, scanning electron microscopy, X-ray diffraction and finite element simulation were used to study the effect of crack in micrometer scale on the failure of water-cooled oxygen-free copper crucible. The temperature distribution of the water-cooled copper crucible ranged from 33 to 183 ℃, and the highest temperature region was referred to the interference fit at the water channel near the water outlet. The cross section of the upper part of the inner wall had a large temperature gradient, which induced large thermal stress. The reason of the failure of the water-cooled copper crucible was the macrocrack induced by the thermal stress, rather than the corrosion of molten metal cerium and the formation of harmful impurity phase. The macrocrack was rooted in the microcrack in tens of micron induced by the interference fit at the water channel during the manufacturing processes of copper crucible. Under the effect of thermal stress, the microcrack grew into the approximately straight crack band. The crack band was composed of cracks with approximately parallel extension direction. Then the growing crack penetrated through the inner wall of the water-cooled copper crucible, which made the copper crucible failure. The frontal area of the inner wall varied a little in the crack growth. No obvious change happened at the regions other than the inner wall of copper crucible.

Key words: microcrack in micrometer scale, water-cooled oxygen-free copper crucible, electron beam-physical vapor deposition, material failure

CLC Number: 

  • TG146.1
[1] 高镇同, 熊峻江. 疲劳/断裂可靠性研究现状与展望[J]. 机械强度, 1995, 17(3): 61-82.
[2] 陈吉刚. 大型机件金属事故分析举例[J]. 热力发电, 1980, 8: 41-52.
[3] HESS P A, DAUSKARDT R H.Mechanisms of elevated temperature fatigue crack growth in Zr-Ti-Cu-Ni-Be bulk metallic glass[J]. 2004, 52(12): 3525-3533.
[4] YANG C, LUAN Y, LI D, et al.Very high cycle fatigue behavior of bearing steel with rare earth addition[J]. International Journal of Fatigue, 2020, 131: 105263.
[5] SURESH S.Fatigue of materials[M]. Cambridge University Press, 1998.
[6] 王中光. 材料疲劳断裂研究的现状和发展[J]. 中国科学院院刊, 1993, 3: 204-208.
[7] 沈功田, 张万岭. 压力容器无损检测技术综述[J]. 无损检测, 2004, 26(1): 39-42.
[8] 冉启芳. 无损检测方法的分类及其特征简介[J]. 无损检测, 1999, 21(2): 30-35.
[9] 郑中兴. 第二专题超声检测中的灵敏度和分辨力[J]. 无损检测, 1993, 15(12): 353-355, 360.
[10] YANG G, DU K, XU D S, et al.High speed dynamic deformation of polysynthetic twinned titanium aluminide intermetallic compound[J]. Acta Materialia, 2018, 152: 269-277.
[11] NINO A, HIRABARA T, SUGIYAMA S, et al.Preparation and characterization of tantalum carbide(TaC) ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2015, 52: 203-208.
[12] YANG G, MA S, DU K, et al.Interactions between dislocations and twins in deformed titanium aluminide crystals[J]. Journal of Materials Science and Technology, 2019, 35(3): 402-408.
[13] 衣林, 陈跃良, 徐丽, 等. 金属材料疲劳微裂纹的萌生与扩展研究[J]. 飞机设计, 2012, 32(2): 63-67.
[14] 孙明月, 李殿中, 李依依, 等. 大型船用曲轴曲拐的弯锻过程模拟与实验研究[J]. 金属学报, 2005, 41(12): 27-32.
[15] ALSAYED A M, ISLAM M F, ZHANG J, et al.Premelting at defects within bulk colloidal crystals[J]. Science, 2005, 309(5738): 1207-1210.
[16] 黄礼琳. 金属材料微观缺陷结构演化的机理研究[D]. 南宁: 广西大学, 2017.
[17] 吴德振, 杨为良, 徐恒雷, 等. 高强高导铜合金的应用与制备方法[J], 热加工工艺, 2019, 48(4): 19-25.
[18] 张天雄, 王元清, 王综轶, 等. TU1无氧铜轴心受压圆管柱整体稳定性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(S1): 115-122.
[19] 李军仁. 铜制坩埚在钛及钛合金铸锭生产中的应用[J]. 钛工业进展, 2003, 1: 33-35.
[20] 陈引茹. 紫铜坩埚及坩埚底垫失效形式分析与处理[J]. 冶金自动化, 2016, S2: 69-71.
[21] 寇生中, 岳武, 丁雨田, 等. 在水冷铜坩埚中用吸铸法制备Cu47Ti34Zr11Ni8块状非晶合金[J]. 科学技术与工程, 2006, 6(3): 302-303.
[22] 陈瑞润, 丁宏升, 毕维生, 等. 电磁冷坩埚技术及其应用[J]. 稀有金属材料与工程, 2005, 34(4): 510-514.
[23] 朱志云, 温嵘生. 影响无氧铜生产质量的因素与控制措施[J]. 江西有色金属, 2003, 17(4): 28-31.
[24] 徐前岗, 唐建新, 陆峰, 等. EB-PVD热障涂层TGO中氧化物混合区的形成及其影响[J]. 材料工程, 2004, (7): 10-13, 17.
[25] 单英春. EB-PVD Ni-Cr薄板沉积的多尺度模拟[D]. 哈尔滨: 哈尔滨工业大学, 2006.
[26] 沈文雁, 霍晓, 张建苏, 等. EB-PVD热障涂层的失效行为研究[J]. 材料工程, 1998, (6): 35-37.
[27] 李国浩, 巴德纯, 王栋, 等. EB-PVD制备YSZ涂层的热震性研究[J]. 真空, 2020, 57(3): 1-4.
[28] 孟彬. EB-PVD工艺制备YSZ及Ni-YSZ功能涂层的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
[29] 杨宗伦. 钢中稀土铈与低熔点金属元素锡相互作用规律研究[D]. 贵阳: 贵州大学, 2006.
[30] 田荣璋, 王祝堂. 铜合金及其加工手册[M]. 长沙: 中南大学出版社, 2002.
[31] HIRTH J P, LOTHE J.Theory of dislocations[M]. New York: John Wiley & Sons, 1982.
[32] ANDERSON T L.Fracture mechanics: fundamentals and applications[M]. CRC Press, 2005.
[33] 郭青蔚, 王桂生, 郭贵庚. 常见有色金属二元合金相图集[M]. 北京: 化学工业出版社, 2009.
[1] LIU Yan-mei, MIAO Yu-hua, PAN Xin, LIU Biao, WANG Cun-shan, LIN Guo-qiang. Analysis on Microstructure and Properties of Graphite/Ni and Graphene Composite Coatings Fabricated by Laser Cladding [J]. VACUUM, 2020, 57(4): 85-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .