欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (2): 81-84.doi: 10.13385/j.cnki.vacuum.2022.02.15

• Vacuum Technology Application • Previous Articles     Next Articles

Precision Molding of High Aspect Ratio Silicon Stepped Drop Structure

DING Jing-bing, HUANG Bin, HE Kai-xuan, ZHAO San-yuan   

  1. East China Institute of Photo Electron IC, Bengbu 233030, China
  • Received:2021-04-21 Online:2022-03-25 Published:2022-04-14

Abstract: Aimed at the problem of device short circuit caused by MEMS step etching, a method based on Bosch is proposed by analyzing the reason for silicon grass formation and the main process parameters of deep silicon step etching, such as etching passivation and Ar physical bombardment, which adopts periodic etching-passivation-pre-etching to form the precision step structure. The method greatly improves the bias power and time of reasonably allocating etching. The results show that, under the process conditions of pre-etching bias power of 100W and pre-etching time of 0.8s, the production of silicon grass can be effectively suppressed. After step etching is completed, SF6 etching gas is used to clean the step silicon grass for 10s to ensure that the silicon grass is completely removed. At this time,the step drop structure obtained is flat and smooth, and the verticality of the etched comb teeth is better than 90°±1°. This method has the characteristics of good repeatability and simple process.

Key words: step etching, high aspect ratio, pre-etching, Si grass, Bosch

CLC Number: 

  • TH703
[1] 黄庆安. 硅微机械加工技术[M]. 北京: 科学出版社, 1996.
[2] 刘鹏, 张大成, 李婷, 等. 多层高深宽比Si深台阶刻蚀方法[J]. 微纳电子技术, 2009, 46(12): 755-757, 763.
[3] TIAN W C, PANG S W.Free standing micro heaters in Si with high aspect ratio microstructures[J]. J. Vac. Sci. Technol. B, 2002, 20(3): 1008.
[4] GERLT M S, LÄUBLI N F, MANSER M, et al. Reduced etch lag and high aspect ratios by deep reactive ion etching(DRIE)[J]. Micromachines, 2021, 12(5): 542-542.
[5] 唐滨. 用于MEMS封装的深硅刻蚀工艺研究[D]. 天津: 天津大学, 2012.
[6] 付智辉, 蒋方圆, 丁佳, 等. 一种用于干法刻蚀硅槽的方法: CN107895694A[P].2018-04-10.
[7] 王旭迪, 张永胜, 胡焕林, 等. 深高宽比微结构的干法刻蚀[J]. 真空, 2004(5): 32-34.
[8] 杨小兵, 王传敏, 孙金池. 工艺参数对Si深槽刻蚀的影响[J]. 微纳电子技术, 2009, 46(7): 424-427.
[9] 崔铮. 微纳加工技术及其应用[M]. 北京: 高等教育出版社, 2017.
[10] ZHANG D C, WAN J W, YAN G Z, et al.High aspect ratio Si etching technique and application[C]//Proc of IEEE 5th ICSICT, 1998.
[11] 王阳元, 武国英, 郝一龙, 等. 硅基MEMS加工技术及其标准工艺研究[J]. 电子学报, 2002, 30(11): 1577-1583.
[12] 庄须叶, 喻磊, 王新龙, 等. MEMS硅半球陀螺球面电极成形工艺[J]. 光学精密工程, 2016, 24(11): 2746-2752.
[13] WANG X D, ZENG W X, LU G P, et al.High aspect ratio Bosch etching of sub-0.2μm trenches for hyper integration applications[J]. Journal of Vacuum Science and Technology B, 2007, 25(4): 1376-1381.
[14] 陈少军, 李以贵. 基于高深宽比Si干法刻蚀参数优化[J]. 微纳电子技术, 2009, 46(12): 750-754.
[15] 张育胜. 平滑陡直的Si深槽刻蚀方法[J]. 半导体技术, 2009, 34(3): 214-216,220.
[16] PARK J S, KANG D H, KWAK S M, et al.Low-temperature smoothing method of scalloped DRIE trench by post-dry etching process based on SF6 plasma[J]. Micro and Nano Systems Letters, 2020, 8: 14.
[17] 高阳. 基于ICP工艺的硅基复杂微纳结构制备[D]. 武汉: 华中科技大学, 2013.
[18] LIPS B, PUERS R.Three step deep reactive ion etch for high density trench etching[J]. Journal of Physics: Conference Series, 2016, 757(1): 012005.
[19] 张旭, 张迪雅. 梳齿型深硅刻蚀工艺研究[J]. 仪表技术与传感器, 2018(2): 1-3.
[20] 任子明, 白冰, 王任鑫, 等. 基于梳齿式电容加速度计的深硅刻蚀[J]. 微纳电子技术, 2017(9): 56-61.
[21] 梁德春, 庄海涵, 李新坤, 等. 高垂直度和低沉积的MEMS陀螺梳齿结构释放工艺[J]. 飞控与探测, 2019, 2(1): 56-60.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .